Cloning and expression of the human Kv4.3 potassium channel

被引:32
作者
Dilks, D [1 ]
Ling, HP [1 ]
Cockett, M [1 ]
Sokol, P [1 ]
Numann, R [1 ]
机构
[1] Wyeth Ayerst Res, CNS Res, Princeton, NJ 08543 USA
关键词
D O I
10.1152/jn.1999.81.4.1974
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We report on the cloning and expression of hKv4.3, a fast inactivating. transient, A-type potassium channel found in both heart and brain that is 91% homologous to the rat Kv4.3 channel. Two isoforms of hKv4.3 were cloned. One is full length (hKv4.3 long), and the other has a 19 amino acid deletion (hKv4.3 short). RT-PCR shows that the brain contains both forms of the channel RNA, whereas the heart predominantly has the longer version. Both versions of the channel were expressed in Xenopus oocytes, and both contain a significant window or noninactivating current seen near potentials of -30 to -40 mV. The inactivation curve for hKv4.3 short is shifted 10 mV positive relative to hKv4.3 long. This causes the peak window current for the short version to occur near -30 mV and the peak for the longer version to be at -40 mV. There was little difference in the recovery from inactivation or in the kinetics of inactivation between the two isoforms of the channel.
引用
收藏
页码:1974 / 1977
页数:4
相关论文
共 23 条
[1]   CHARACTERIZATION OF A MAMMALIAN CDNA FOR AN INACTIVATING VOLTAGE-SENSITIVE K+ CHANNEL [J].
BALDWIN, TJ ;
TSAUR, ML ;
LOPEZ, GA ;
JAN, YN ;
JAN, LY .
NEURON, 1991, 7 (03) :471-483
[3]   LOW-MOLECULAR-WEIGHT POLY(A)+ MESSENGER-RNA SPECIES ENCODE FACTORS THAT MODULATE GATING OF A NON-SHAKER A-TYPE K+ CHANNEL [J].
CHABALA, LD ;
BAKRY, N ;
COVARRUBIAS, M .
JOURNAL OF GENERAL PHYSIOLOGY, 1993, 102 (04) :713-728
[4]   VOLTAGE CLAMP STUDIES OF A TRANSIENT OUTWARD MEMBRANE CURRENT IN GASTROPOD NEURAL SOMATA [J].
CONNOR, JA ;
STEVENS, CF .
JOURNAL OF PHYSIOLOGY-LONDON, 1971, 213 (01) :21-&
[5]   PREDICTION OF REPETITIVE FIRING BEHAVIOUR FROM VOLTAGE CLAMP DATA ON AN ISOLATED NEURONE SOMA [J].
CONNOR, JA ;
STEVENS, CF .
JOURNAL OF PHYSIOLOGY-LONDON, 1971, 213 (01) :31-&
[6]   Role of the Kv4.3 K+ channel in ventricular muscle - A molecular correlate for the transient outward current [J].
Dixon, JE ;
Shi, WM ;
Wang, HS ;
McDonald, C ;
Yu, H ;
Wymore, RS ;
Cohen, IS ;
McKinnon, D .
CIRCULATION RESEARCH, 1996, 79 (04) :659-668
[7]   Shal-type channels contribute to the Ca2+-independent transient outward K+ current in rat ventricle [J].
Fiset, C ;
Clark, RB ;
Shimoni, Y ;
Giles, WR .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 500 (01) :51-64
[9]  
Hille B., 1992, IONIC CHANNELS EXCIT
[10]   K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons [J].
Hoffman, DA ;
Magee, JC ;
Colbert, CM ;
Johnston, D .
NATURE, 1997, 387 (6636) :869-875