On the energetic stability and electrochemistry of Li2MnSiO4 polymorphs

被引:172
作者
Arroyo-deDompablo, M. E. [1 ]
Dominko, R. [2 ,3 ]
Gallardo-Amores, J. M. [1 ]
Dupont, L. [4 ]
Mali, G.
Ehrenberg, H. [5 ]
Jamnik, J. [2 ]
Moran, E. [1 ]
机构
[1] Univ Complutense Madrid, Fac CC Quim, Dept Quim Inorgan, E-28040 Madrid, Spain
[2] Natl Inst Chem, SI-1000 Ljubljana, Slovenia
[3] ALISTORE European Res Inst, Amiens, France
[4] Univ Picardie Jules Verne, LRCS, UMR 6007, F-80039 Amiens, France
[5] IFW Dresden, D-01069 Dresden, Germany
关键词
D O I
10.1021/cm801036k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The thermodynamic stability of Li2MnSiO4 Polymorphs and their electrochemical properties as electrode for Li batteries are investigated combining experimental and computational methods. Three possible Li2MnSiO4 forms have been considered crystallizing in Pmnb, Pmn2(1) (beta-Li3PO4 derivatives) and P2(1)/n (gamma-Li3PO4 derivative) space groups (S.G.). We have first demonstrated that the relative stability of beta-and gamma-Li3PO4 polymorphs is well-reproduced by density functional theory (DFT) methods (LDA, GGA). For Li2MnSiO4, the Pmnb form is predicted to be 2.4 meV/f.u. and 65 meV/f.u. more stable than the Pmn2(1) and P2(1)/n forms, respectively (GGA + U results). Computational results indicate that the denser Pmn2(1) polymorph can be obtained by high pressure/high temperature treatment of the other polymorphs or their mixtures. A sample of Li2MnSiO4 prepared at 900 degrees C consists of a mixture of polymorphs, as detected by XRD and confirmed by means of SAED and Li-6 MAS-NMR. As expected from DFT results, exposing the as-prepared Li2MnSiO4 sample to high pressure/high temperature (pressure range 2-8 GPa, temperature range 600-900 degrees C) allows to isolate the Pmn21 polymorph. The crystal structure has a minor impact in the average lithium intercalation voltage for the two electron process (GGA+U calculated voltages are 4.18, 4.19, and 4.08 V for Pmnb, Pmn2(1) and P2(1)/n, respectively). Major structural rearrangements are expected under lithium deinsertion from the P2(1)/n polymorph, as previously found for the beta-Li3PO4 derivatives, rendering any MnSiO4 delithiated hosts prompt to transform into a more stable structure or a mixture of them.
引用
收藏
页码:5574 / 5584
页数:11
相关论文
共 31 条
[1]   On-demand design of polyoxianionic cathode materials based on electronegativity correlations:: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) [J].
Arroyo-de Dompablo, M. E. ;
Armand, M. ;
Tarascon, J. M. ;
Amador, U. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (08) :1292-1298
[2]   Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides [J].
Aydinol, MK ;
Kohan, AF ;
Ceder, G ;
Cho, K ;
Joannopoulos, J .
PHYSICAL REVIEW B, 1997, 56 (03) :1354-1365
[3]   V2O5 phase diagram revisited at high pressures and high temperatures [J].
Balog, P. ;
Orosel, D. ;
Cancarevic, Z. ;
Schoen, C. ;
Jansen, M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 429 (1-2) :87-98
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   High-pressure molecular phases of solid carbon dioxide [J].
Bonev, SA ;
Gygi, F ;
Ogitsu, T ;
Galli, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (06)
[6]  
Carvajal J. R., 2001, NEWSLETTER, V26, p[12, 55]
[7]   Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Meden, A ;
Remskar, M ;
Jamnik, J .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (02) :217-222
[8]   Computational and experimental investigation of the transformation of V2O5 under pressure [J].
Gallardo-Amores, J. M. ;
Biskup, N. ;
Amador, U. ;
Persson, K. ;
Ceder, G. ;
Moran, E. ;
Arroyo, M. E. ;
Arroyo y de Dompablo, M. E. .
CHEMISTRY OF MATERIALS, 2007, 19 (22) :5262-5271
[9]   MELTING OF DIAMOND AT HIGH-PRESSURE [J].
GALLI, G ;
MARTIN, RM ;
CAR, R ;
PARRINELLO, M .
SCIENCE, 1990, 250 (4987) :1547-1549
[10]  
GRUMBACH MP, 1996, PHYS REV B, V54, P2471