Important role for the CA-NC spacer region in the assembly of bovine immunodeficiency virus Gag protein

被引:16
作者
Guo, XF
Hu, J
Whitney, JB
Russell, RS
Liang, C
机构
[1] Jewish Gen Hosp, Lady Davis Inst, McGill AIDS Ctr, Montreal, PQ H3T 1E2, Canada
[2] McGill Univ, Dept Med, Montreal, PQ H3A 2B4, Canada
[3] McGill Univ, Dept Microbiol & Immunol, Montreal, PQ H3A 2B4, Canada
关键词
D O I
10.1128/JVI.78.2.551-560.2004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Lentiviral Gag proteins contain a short spacer sequence that separates the capsid (CA) from the downstream nucleocapsid (NC) domain. This short spacer has been shown to play an important role in the assembly of human immunodeficiency virus type 1 (HIV-1). We have now extended this finding to the CA-NC spacer motif within the Gag protein of bovine immunodeficiency virus (BIV). Mutation of this latter spacer sequence led to dramatic reductions in virus production, which was mainly attributed to the severely disrupted association of the mutated Gag with the plasma membrane, as shown by the results of membrane flotation assays and confocal microscopy. Detailed mutagenesis analysis of the BIV CA-NC spacer region for virus assembly determinants led to the identification of two key residues, L368 and M372, which are separated by three amino acids, 369-VAA-371. Incidentally, the same two residues are present within the HIV-1 CA-NC spacer region at positions 364 and 368 and have also been shown to be crucial for HIV-1 assembly. Regardless of this conservation between these two viruses, the BIV CA-NC spacer could not be replaced by its HIV-1 counterpart without decreasing virus production, as opposed to its successful replacement by the CA-NC spacer sequences from the nonprimate lentiviruses such as feline immunodeficiency virus (FIV), equine infectious anemia virus and visna virus, with the sequence from FIV showing the highest effectiveness in this regard. Taken together, these data suggest a pivotal role for the CA-NC spacer region in the assembly of BIV Gag; however, the mechanism involved therein may differ from that for the HIV-1 CA-NC spacer.
引用
收藏
页码:551 / 560
页数:10
相关论文
共 49 条
[1]   Efficient particle production by minimal gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain [J].
Accola, MA ;
Strack, B ;
Göttlinger, HG .
JOURNAL OF VIROLOGY, 2000, 74 (12) :5395-5402
[2]   A putative α-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly [J].
Accola, MA ;
Höglund, S ;
Göttlinger, HG .
JOURNAL OF VIROLOGY, 1998, 72 (03) :2072-2078
[3]   Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab [J].
Berthet-Colominas, C ;
Monaco, S ;
Novelli, A ;
Sibaï, G ;
Mallet, F ;
Cusack, S .
EMBO JOURNAL, 1999, 18 (05) :1124-1136
[4]   NECESSITY OF THE SPACER PEPTIDE BETWEEN CA AND NC IN THE ROUS-SARCOMA VIRUS GAG PROTEIN [J].
CRAVEN, RC ;
LEUREDUPREE, AE ;
ERDIE, CR ;
WILSON, CB ;
WILLS, JW .
JOURNAL OF VIROLOGY, 1993, 67 (10) :6246-6252
[5]   IDENTIFICATION OF PROTEOLYTIC PROCESSING SITES WITHIN THE GAG AND POL POLYPROTEINS OF FELINE IMMUNODEFICIENCY VIRUS [J].
ELDER, JH ;
SCHNOLZER, M ;
HASSELKUSLIGHT, CS ;
HENSON, M ;
LERNER, DA ;
PHILLIPS, TR ;
WAGAMAN, PC ;
KENT, SBH .
JOURNAL OF VIROLOGY, 1993, 67 (04) :1869-1876
[6]   INNER ARCHITECTURE OF HUMAN AND SIMIAN IMMUNODEFICIENCY VIRUSES [J].
FUKUI, T ;
IMURA, S ;
GOTO, T ;
NAKAI, M .
MICROSCOPY RESEARCH AND TECHNIQUE, 1993, 25 (04) :335-340
[7]   Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle [J].
Fuller, SD ;
Wilk, T ;
Gowen, BE ;
Krausslich, HG ;
Vogt, VM .
CURRENT BIOLOGY, 1997, 7 (10) :729-738
[8]   Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid [J].
Gamble, TR ;
Vajdos, FF ;
Yoo, SH ;
Worthylake, DK ;
Houseweart, M ;
Sundquist, WI ;
Hill, CP .
CELL, 1996, 87 (07) :1285-1294
[9]   Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein [J].
Gamble, TR ;
Yoo, SH ;
Vajdos, FF ;
vonSchwedler, UK ;
Worthylake, DK ;
Wang, H ;
McCutcheon, JP ;
Sundquist, WI ;
Hill, CP .
SCIENCE, 1997, 278 (5339) :849-853
[10]   Structure of the amino-terminal core domain of the HIV-1 capsid protein [J].
Gitti, RK ;
Lee, BM ;
Walker, J ;
Summers, MF ;
Yoo, S ;
Sundquist, WI .
SCIENCE, 1996, 273 (5272) :231-235