A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1

被引:62
作者
Kusari, AB [1 ]
Molina, DM [1 ]
Sabbagh, W [1 ]
Lau, CS [1 ]
Bardwell, L [1 ]
机构
[1] Univ Calif Irvine, Dept Dev & Cell Biol, Irvine, CA 92697 USA
关键词
mitogen-activated protein kinases; signal transduction; phosphorylation; binding sites; protein binding;
D O I
10.1083/jcb.200310021
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The Saccharomyces cerevisiae mitogen-activated protein kinases (MAPKs) Fus3 and Kss1 bind to multiple regulators and substrates. We show that mutations in a conserved docking site in these MAPKs (the CD/7rn region) disrupt binding to an important subset of their binding partners, including the Ste7 MAPK kinase, the Ste5 adaptor/scaffold protein, and the Dig1 and Dig2 transcriptional repressors. Supporting the possibility that Ste5 and Ste7 bind to the same region of the MAPKs, they partially competed for Fus3 binding. In vivo, some of the MAPK mutants displayed reduced Ste7-dependent phosphorylation, and all of them exhibited multiple defects in mating and pheromone response. The Kss1 mutants were also defective in Kss1-imposed repression of Ste12. We conclude that MAPKs contain a structurally and functionally conserved docking site that mediates an overall positively acting network of interactions with cognate docking sites on their regulators and substrates. Key features of this interaction network appear to have been conserved from yeast to humans.
引用
收藏
页码:267 / 277
页数:11
相关论文
共 36 条
[1]   Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAR phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity [J].
Bardwell, AJ ;
Abdollahi, M ;
Bardwell, L .
BIOCHEMICAL JOURNAL, 2003, 370 (370) :1077-1085
[2]   A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission [J].
Bardwell, AJ ;
Flatauer, LJ ;
Matsukuma, K ;
Thorner, J ;
Bardwell, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (13) :10374-10386
[3]   Differential regulation of transcription: Repression by unactivated mitogen-activated protein kinase Kss1 requires the Dig1 and Dig2 proteins [J].
Bardwell, L ;
Cook, JG ;
Zhu-Shimoni, JX ;
Voora, D ;
Thorner, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15400-15405
[4]   Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK [J].
Bardwell, L ;
Cook, JG ;
Voora, D ;
Baggott, DM ;
Martinez, AR ;
Thorner, J .
GENES & DEVELOPMENT, 1998, 12 (18) :2887-2898
[5]   A conserved motif at the amino termini of MEKs might mediate high-affinity interaction with the cognate MAPKs [J].
Bardwell, L ;
Thorner, J .
TRENDS IN BIOCHEMICAL SCIENCES, 1996, 21 (10) :373-374
[6]  
Bardwell L, 1996, MOL CELL BIOL, V16, P3637
[7]   THE SEVENMAKER GAIN-OF-FUNCTION MUTATION IN P42 MAP KINASE LEADS TO ENHANCED SIGNALING AND REDUCED SENSITIVITY TO DUAL-SPECIFICITY PHOSPHATASE ACTION [J].
BOTT, CM ;
THORNEYCROFT, SG ;
MARSHALL, CJ .
FEBS LETTERS, 1994, 352 (02) :201-205
[8]   A GAIN-OF-FUNCTION MUTATION IN DROSOPHILA MAP KINASE ACTIVATES MULTIPLE RECEPTOR TYROSINE KINASE SIGNALING PATHWAYS [J].
BRUNNER, D ;
OELLERS, N ;
SZABAD, J ;
BIGGS, WH ;
ZIPURSKY, SL ;
HAFEN, E .
CELL, 1994, 76 (05) :875-888
[9]  
CHOI KY, 1994, CELL, V78, P499
[10]   The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation [J].
Chu, YF ;
Solski, PA ;
KhosraviFar, R ;
Der, CJ ;
Kelly, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (11) :6497-6501