Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy

被引:132
作者
Taniguchi-Ikeda, Mariko [1 ,2 ]
Kobayashi, Kazuhiro [1 ]
Kanagawa, Motoi [1 ]
Yu, Chih-chieh [1 ]
Mori, Kouhei [1 ]
Oda, Tetsuya [1 ]
Kuga, Atsushi [1 ]
Kurahashi, Hiroki [3 ]
Akman, Hasan O. [4 ]
DiMauro, Salvatore [4 ]
Kaji, Ryuji [5 ]
Yokota, Toshifumi [6 ]
Takeda, Shin'ichi [7 ]
Toda, Tatsushi [1 ]
机构
[1] Kobe Univ, Grad Sch Med, Div Neurol Mol Brain Sci, Kobe, Hyogo 6500017, Japan
[2] Kobe Univ, Grad Sch Med, Div Gen Pediat, Kobe, Hyogo 6500017, Japan
[3] Fujita Hlth Univ, Inst Comprehens Med Sci, Div Mol Genet, Aichi 4701192, Japan
[4] Columbia Univ, Med Ctr, Dept Neurol, New York, NY 10032 USA
[5] Univ Tokushima, Grad Sch, Dept Clin Neurosci, Tokushima 7708503, Japan
[6] Univ Alberta, Fac Med & Dent, Dept Med Genet, Edmonton, AB T6G 2H7, Canada
[7] Natl Ctr Neurol & Psychiat, Natl Inst Neurosci, Dept Mol Therapy, Kodaira, Tokyo 1878502, Japan
基金
日本学术振兴会;
关键词
DYSTROGLYCAN GLYCOSYLATION; TRANSPOSABLE ELEMENTS; GENOME EVOLUTION; GENE; INSERTION; EXPRESSION; DISEASE; PATHOLOGY; HUMANS; FAMILY;
D O I
10.1038/nature10456
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fukuyama muscular dystrophy (FCMD; MIM253800), one of the most common autosomal recessive disorders in Japan, was the first human disease found to result from ancestral insertion of a SINE-VNTR-Alu (SVA) retrotransposon into a causative gene(1-3). In FCMD, the SVA insertion occurs in the 3' untranslated region (UTR) of the fukutin gene. The pathogenic mechanism for FCMD is unknown, and no effective clinical treatments exist. Here we show that aberrant messenger RNA (mRNA) splicing, induced by SVA exon-trapping, underlies the molecular pathogenesis of FCMD. Quantitative mRNA analysis pinpointed a region that was missing from transcripts in patients with FCMD. This region spans part of the 3' end of the fukutin coding region, a proximal part of the 3' UTR and the SVA insertion. Correspondingly, fukutin mRNA transcripts in patients with FCMD and SVA knock-in model mice were shorter than the expected length. Sequence analysis revealed an abnormal splicing event, provoked by a strong acceptor site in SVA and a rare alternative donor site in fukutin exon 10. The resulting product truncates the fukutin carboxy (C) terminus and adds 129 amino acids encoded by the SVA. Introduction of antisense oligonucleotides (AONs) targeting the splice acceptor, the predicted exonic splicing enhancer and the intronic splicing enhancer prevented pathogenic exon-trapping by SVA in cells of patients with FCMD and model mice, rescuing normal fukutin mRNA expression and protein production. AON treatment also restored fukutin functions, including O-glycosylation of alpha-dystroglycan (alpha-DG) and laminin binding by alpha-DG. Moreover, we observe exon-trapping in other SVA insertions associated with disease (hypercholesterolemia(4), neutral lipid storage disease(5)) and human-specific SVA insertion in a novel gene. Thus, although splicing into SVA is known(6-8), we have discovered in human disease a role for SVA-mediated exon-trapping and demonstrated the promise of splicing modulation therapy as the first radical clinical treatment for FCMD and other SVA-mediated diseases.
引用
收藏
页码:127 / U143
页数:7
相关论文
共 33 条
[1]   Neutral lipid storage disease with subclinical myopathy due to a retrotransposal insertion in the PNPLA2 gene [J].
Akman, Hasan O. ;
Davidzon, Guido ;
Tanji, Kurenai ;
MacDermott, Emma J. ;
Larsen, Louann ;
Davidson, Mercy M. ;
Haller, Ronald G. ;
Szczepaniak, Lidia S. ;
Lehman, Thomas J. A. ;
Hirano, Michio ;
DiMauro, Salvatore .
NEUROMUSCULAR DISORDERS, 2010, 20 (06) :397-402
[2]   Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology [J].
Alter, J ;
Lou, F ;
Rabinowitz, A ;
Yin, HF ;
Rosenfeld, J ;
Wilton, SD ;
Partridge, TA ;
Lu, QL .
NATURE MEDICINE, 2006, 12 (02) :175-177
[3]   Novel family of human transposable elements formed due to fusion of the first exon of gene MAST2 with retrotransposon SVA [J].
Bantysh, O. B. ;
Buzdin, A. A. .
BIOCHEMISTRY-MOSCOW, 2009, 74 (12) :1393-1399
[4]   Dystroglycan: from biosynthesis to pathogenesis of human disease [J].
Barresi, R ;
Campbell, KP .
JOURNAL OF CELL SCIENCE, 2006, 119 (02) :199-207
[5]   LARGE can functionally bypass α-dystroglycan glycosylation defects in distinct congenital muscular dystrophies [J].
Barresi, R ;
Michele, DE ;
Kanagawa, M ;
Harper, HA ;
Dovico, SA ;
Satz, JS ;
Moore, SA ;
Zhang, WL ;
Schachter, H ;
Dumanski, JP ;
Cohn, RD ;
Nishino, I ;
Campbell, KP .
NATURE MEDICINE, 2004, 10 (07) :696-703
[6]   Natural genetic variation caused by transposable elements in humans [J].
Bennettt, EA ;
Coleman, LE ;
Tsui, C ;
Pittard, WS ;
Devine, SE .
GENETICS, 2004, 168 (02) :933-951
[7]   The impact of retrotransposons on human genome evolution [J].
Cordaux, Richard ;
Batzer, Mark A. .
NATURE REVIEWS GENETICS, 2009, 10 (10) :691-703
[8]   Vitravene™ -: another piece in the mosaic [J].
Crooke, ST .
ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT, 1998, 8 (04) :VII-VIII
[9]   5′-Transducing SVA retrotransposon groups spread efficiently throughout the human genome [J].
Damert, Annette ;
Raiz, Julija ;
Horn, Axel V. ;
Loewer, Johannes ;
Wang, Hui ;
Xing, Jinchuan ;
Batzer, Mark A. ;
Loewer, Roswitha ;
Schumann, Gerald G. .
GENOME RESEARCH, 2009, 19 (11) :1992-2008
[10]   Retrotransposition of marked SVA elements by human L1s in cultured cells [J].
Hancks, Dustin C. ;
Goodier, John L. ;
Mandal, Prabhat K. ;
Cheung, Ling E. ;
Kazazian, Haig H., Jr. .
HUMAN MOLECULAR GENETICS, 2011, 20 (17) :3386-3400