Designer Magnetoplasmonics with Nickel Nanoferromagnets

被引:199
作者
Bonanni, Valentina [1 ,2 ]
Bonetti, Stefano [2 ]
Pakizeh, Tavakol [3 ]
Pirzadeh, Zhaleh [1 ]
Chen, Jianing [4 ,5 ,6 ]
Nogues, Josep [7 ,8 ,9 ]
Vavassori, Paolo [4 ,10 ]
Hillenbrand, Rainer [4 ,10 ]
Akerman, Johan [2 ,11 ]
Dmitriev, Alexandre [1 ]
机构
[1] Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden
[2] KTH Royal Inst Technol, Sch Informat & Commun Technol, Kista, Sweden
[3] KN Toosi Univ Technol, Fac Elect & Comp Engn, Tehran 16314, Iran
[4] CIC NanoGUNE Consolider, Donostia San Sebastian 20018, Spain
[5] CSIC UPV EHU, Ctr Fis Mat, Donostia San Sebastian 20018, Spain
[6] Donostia Int Phys Ctr DIPC, Donostia San Sebastian 20018, Spain
[7] Univ Autonoma Barcelona, ICN, Bellaterra, Barcelona, Spain
[8] CIN2 ICN CSIC, Bellaterra, Barcelona, Spain
[9] ICREA, Barcelona, Spain
[10] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[11] Univ Gothenburg, Dept Phys, S-41296 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
Localized surface plasmon resonance; magnetic nanoparticles; magnetoplasmonics; magneto-optical effect; Kerr rotation; ENHANCED MAGNETOOPTICS; ARRAYS;
D O I
10.1021/nl2028443
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We introduce a new perspective on magnetoplasmonics in nickel nanoferromagnets by exploiting the phase tunability of the optical polarizability due to localized surface plasmons and simultaneous magneto-optical activity. We demonstrate how the concerted action of nanoplasmonics and magnetization can manipulate the sign of rotation of the reflected light's polarization (i.e., to produce Kerr rotation reversal) in ferromagnetic nanomaterials and, further, how this effect can be dynamically controlled and employed to devise conceptually new schemes for biochemosensing.
引用
收藏
页码:5333 / 5338
页数:6
相关论文
共 33 条
[1]  
[Anonymous], 1998, ANAL MICROSTRUCTURES
[2]   Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems [J].
Belotelov, V. I. ;
Doskolovich, L. L. ;
Zvezdin, A. K. .
PHYSICAL REVIEW LETTERS, 2007, 98 (07)
[3]  
Belotelov VI, 2011, NAT NANOTECHNOL, V6, P370, DOI [10.1038/nnano.2011.54, 10.1038/NNANO.2011.54]
[4]   Electron-spin-dependent terahertz light transport in spintronic-plasmonic media [J].
Chau, K. J. ;
Johnson, Mark ;
Elezzabi, A. Y. .
PHYSICAL REVIEW LETTERS, 2007, 98 (13)
[5]   Plasmonic Nickel Nanoantennas [J].
Chen, Jianing ;
Albella, Pablo ;
Pirzadeh, Zhaleh ;
Alonso-Gonzalez, Pablo ;
Huth, Florian ;
Bonetti, Stefano ;
Bonanni, Valentina ;
Akerman, Johan ;
Nogues, Josep ;
Vavassori, Paolo ;
Dmitriev, Alexandre ;
Aizpurua, Javier ;
Hillenbrand, Rainer .
SMALL, 2011, 7 (16) :2341-2347
[6]   Single-domain circular nanomagnets [J].
Cowburn, RP ;
Koltsov, DK ;
Adeyeye, AO ;
Welland, ME ;
Tricker, DM .
PHYSICAL REVIEW LETTERS, 1999, 83 (05) :1042-1045
[7]   Optical and Magnetic Properties of Hexagonal Arrays of Subwavelength Holes in Optically Thin Cobalt Films [J].
Ctistis, G. ;
Papaioannou, E. ;
Patoka, P. ;
Gutek, J. ;
Fumagalli, P. ;
Giersig, M. .
NANO LETTERS, 2009, 9 (01) :1-6
[8]   Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect [J].
Dmitriev, Alexandre ;
Hagglund, Carl ;
Chen, Si ;
Fredriksson, Hans ;
Pakizeh, Tavakol ;
Kall, Mikael ;
Sutherland, Duncan S. .
NANO LETTERS, 2008, 8 (11) :3893-3898
[9]   Shape-enhanced magneto-optical activity: Degree of freedom for active plasmonics [J].
Du, G. X. ;
Mori, T. ;
Saito, S. ;
Takahashi, M. .
PHYSICAL REVIEW B, 2010, 82 (16)
[10]   Direct Near-Field Optical Imaging of Higher Order Plasmonic Resonances [J].
Esteban, R. ;
Vogelgesang, R. ;
Dorfmueller, J. ;
Dmitriev, A. ;
Rockstuhl, C. ;
Etrich, C. ;
Kern, K. .
NANO LETTERS, 2008, 8 (10) :3155-3159