Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea:: genes involved in appressorium formation

被引:39
作者
Irie, T
Matsumura, H
Terauchi, R
Saitoh, H
机构
[1] Max Planck Inst Plant Breeding Res, D-50829 Cologne, Germany
[2] Univ Shiga Prefecture, Dept Environm Sci, Shiga 5228533, Japan
[3] Iwate Biotechnol Res Ctr, Kitakami, Iwate 0240003, Japan
[4] Japan Soc Promot Sci, Chiyoda Ku, Tokyo 1028471, Japan
基金
日本学术振兴会;
关键词
Magnaporthe grisea; rice blast; SAGE (Serial Analysis of Gene Expression); gene expression profile; appressorium;
D O I
10.1007/s00438-003-0911-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Treatment with cyclic AMP (cAMP) induces appressorium formation in the phytopathogenic fungus Magnaporthe grisea, the causative agent of rice blast disease. In a search for the M. grisea genes responsible for appressorium formation and host invasion, SAGE (Serial Analysis of Gene Expression) was carried out using mRNA isolated from fungal conidia germinating in the presence and absence of cAMP. From cAMP-treated conidia 5087 tags including 2889 unique tags were isolated, whereas untreated conidia yielded 2342 unique tags out of total of 3938. cAMP treatment resulted in up- and down-regulation of genes corresponding to 57 and 53 unique tags, respectively. Upon consultation of EST/cDNA databases, 22 tags with higher representation in cAMP-treated conidia were annotated with putative gene names. Furthermore, 28 tags corresponding to cAMP-induced genes could be annotated with the help of the recently published genome sequence of M. grisea. cAMP-induced genes identified by SAGE included many genes that have not been described so far, as well as a number of genes known to be involved in pathogenicity, e.g. MPG1, MAS1 and MAC1. RT-PCR of 13 randomly selected genes confirmed the SAGE results, verifying the fidelity of the SAGE data.
引用
收藏
页码:181 / 189
页数:9
相关论文
共 38 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]   Signaling in plant-microbe interactions [J].
Baker, B ;
Zambryski, P ;
Staskawicz, B ;
DineshKumar, SP .
SCIENCE, 1997, 276 (5313) :726-733
[3]   Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis [J].
Balhadère, PV ;
Foster, AJ ;
Talbot, NJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1999, 12 (02) :129-142
[4]   PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea [J].
Balhadère, PV ;
Talbot, NJ .
PLANT CELL, 2001, 13 (09) :1987-2004
[5]   MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition [J].
Beckerman, JL ;
Ebbole, DJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1996, 9 (06) :450-456
[6]   The adenylate cyclase gene MAC1 of Magnaporthe grisea controls Appressorium formation and other aspects of growth and development [J].
Choi, WB ;
Dean, RA .
PLANT CELL, 1997, 9 (11) :1973-1983
[7]   GENETIC-ANALYSIS OF MELANIN-DEFICIENT, NONPATHOGENIC MUTANTS OF MAGNAPORTHE-GRISEA [J].
CHUMLEY, FG ;
VALENT, B .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1990, 3 (03) :135-143
[8]   PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea [J].
Clergeot, PH ;
Gourgues, M ;
Cots, J ;
Laurans, F ;
Latorse, MP ;
Pépin, R ;
Tharreau, D ;
Notteghem, JL ;
Lebrun, MH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (12) :6963-6968
[9]   Infection-related development in the rice blast fungus Magnaporthe grisea [J].
Hamer, JE ;
Talbot, NJ .
CURRENT OPINION IN MICROBIOLOGY, 1998, 1 (06) :693-697
[10]   Breaking and entering: Host penetration by the fungal rice blast pathogen Magnaporthe grisea [J].
Howard, RJ ;
Valent, B .
ANNUAL REVIEW OF MICROBIOLOGY, 1996, 50 :491-512