Nanorods and nanotubes for solar cells

被引:137
作者
Kislyuk, V. V. [1 ,2 ]
Dimitriev, O. P. [1 ]
机构
[1] V Lashkaryov Inst Semicond Phys, UA-03028 Kiev, Ukraine
[2] TG Shevchenko Kyiv Natl Univ, UA-03022 Kiev, Ukraine
关键词
solar cells; nanorod; nanotube; nanowire; top-down growth; bottom-up growth; photovoltaic performance;
D O I
10.1166/jnn.2008.N16
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanorods and nanotubes as photoactive materials as well as electrodes in photovoltaic cells have been launched a few years ago, and the literature in this field started to appear only recently. The first steps have shown both advantages and disadvantages of their application, and the main expectation associated with their effective charge transport has not been realized completely. This article aims to review both the first and the recent tendencies in the development and application of nanorod and nanotube materials in photovoltaic cells. Two basic techniques of synthesis of crystalline nanorod structures are described, the top-down and bottom-up approaches, respectively. Design and photovoltaic performance of solar cells based on various semiconductor nanorod materials, such as TiO2, ZnO, CdS, CdSe, CdTe, CuO, Si are presented and compared with respective solar cells based on semiconductor nanciparticles. Specific of synthesis and application of carbon nanotubes in photovoltaic devices is also reviewed.
引用
收藏
页码:131 / 148
页数:18
相关论文
共 143 条
[1]   Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism [J].
Adachi, M ;
Murata, Y ;
Takao, J ;
Jiu, JT ;
Sakamoto, M ;
Wang, FM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (45) :14943-14949
[2]  
Ago H, 1999, ADV MATER, V11, P1281, DOI 10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO
[3]  
2-6
[4]   Nanotubes from carbon [J].
Ajayan, PM .
CHEMICAL REVIEWS, 1999, 99 (07) :1787-1799
[5]   Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells [J].
Anandan, S ;
Wen, XG ;
Yang, SH .
MATERIALS CHEMISTRY AND PHYSICS, 2005, 93 (01) :35-40
[6]   Excitons in carbon nanotubes [J].
Ando, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (04) :1066-1073
[7]  
[Anonymous], 3 GEN PHOTOVOLTAICS
[8]   Single-wall carbon nanotube films for photocurrent generation. A prompt response to visible-light irradiation [J].
Barazzouk, S ;
Hotchandani, S ;
Vinodgopal, K ;
Kamat, PV .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (44) :17015-17018
[9]   Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires [J].
Baxter, JB ;
Aydil, ES .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (05) :607-622
[10]   Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices [J].
Bhattacharyya, S ;
Kymakis, E ;
Amaratunga, GAJ .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4819-4823