Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy

被引:713
作者
Moalem, G
Leibowitz-Amit, R
Yoles, E
Mor, F
Cohen, IR
Schwartz, M [1 ]
机构
[1] Weizmann Inst Sci, Dept Neurobiol, IL-76100 Rehovot, Israel
[2] Weizmann Inst Sci, Dept Immunol, IL-76100 Rehovot, Israel
关键词
D O I
10.1038/4734
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Autoimmunity to antigens of the central nervous system is usually considered detrimental. T cells specific to a central nervous system self antigen, such as myelin basic protein, can indeed induce experimental autoimmune encephalomyelitis, but such T cells may nevertheless appear in the blood of healthy individuals. We show here that autoimmune T cells specific to myelin basic protein can protect injured central nervous system neurons from secondary degeneration. After a partial crush injury of the optic nerve, rats injected with activated anti-myelin basic protein T cells retained approximately 300% more retinal ganglion cells with functionally intact axons than did rats injected with activated T cells specific for other antigens. Electrophysiological analysis confirmed this finding and suggested that the neuroprotection could result from a transient reduction in energy requirements owing to a transient reduction in nerve activity. These findings indicate that T-cell autoimmunity in the central nervous system, under certain circumstances, can exert a beneficial effect by protecting injured neurons from the spread of damage.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 54 条