Development of first principles capacity fade model for Li-ion cells

被引:629
作者
Ramadass, P [1 ]
Haran, B [1 ]
Gomadam, PM [1 ]
White, R [1 ]
Popov, BN [1 ]
机构
[1] Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA
关键词
D O I
10.1149/1.1634273
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A first principles-based model has been developed to simulate the capacity fade of Li-ion batteries. Incorporation of a continuous occurrence of the solvent reduction reaction during constant current and constant voltage (CC-CV) charging explains the capacity fade of the battery. The effect of parameters such as end of charge voltage and depth of discharge, the film resistance, the exchange current density, and the over voltage of the parasitic reaction on the capacity fade and battery performance were studied qualitatively. The parameters that were updated for every cycle as a result of the side reaction were state-of-charge of the electrode materials and the film resistance, both estimated at the end of CC-CV charging. The effect of rate of solvent reduction reaction and the conductivity of the film formed were also studied. (C) 2004 The Electrochemical Society.
引用
收藏
页码:A196 / A203
页数:8
相关论文
共 19 条
[1]   Capacity fade mechanisms and side reactions in lithium-ion batteries [J].
Arora, P ;
White, RE ;
Doyle, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) :3647-3667
[2]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86
[3]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[4]   Transfer mechanism in solid-electrolyte layers on lithium: influence of temperature and polarization [J].
Churikov, AV .
ELECTROCHIMICA ACTA, 2001, 46 (15) :2415-2426
[5]   Modeling side reactions in composite LiyMn2O4 electrodes [J].
Darling, R ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (03) :990-998
[6]   Comparison of modeling predictions with experimental data from plastic lithium ion cells [J].
Doyle, M ;
Newman, J ;
Gozdz, AS ;
Schmutz, CN ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (06) :1890-1903
[7]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[8]   SIMULATION AND OPTIMIZATION OF THE DUAL LITHIUM ION INSERTION CELL [J].
FULLER, TF ;
DOYLE, M ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) :1-10
[9]   Mathematical modeling of lithium-ion and nickel battery systems [J].
Gomadam, PM ;
Weidner, JW ;
Dougal, RA ;
White, RE .
JOURNAL OF POWER SOURCES, 2002, 110 (02) :267-284
[10]   The mechanism of lithium intercalation in graphite film electrodes in aprotic media .1. High resolution slow scan rate cyclic voltammetric studies and modeling [J].
Levi, MD ;
Aurbach, D .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1997, 421 (1-2) :79-88