Character formulae of (sl)over-capn-modules and inhomogeneous paths

被引:38
作者
Hatayama, G [1 ]
Kirillov, AN
Kuniba, A
Okado, M
Takagi, T
Yamada, Y
机构
[1] Univ Tokyo, Inst Phys, Tokyo 1538902, Japan
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[3] VA Steklov Math Inst, St Petersburg 191011, Russia
[4] Osaka Univ, Fac Engn Sci, Dept Math Sci, Toyonaka, Osaka 5608531, Japan
[5] Natl Def Acad, Dept Math & Phys, Yokosuka, Kanagawa 2398686, Japan
[6] Kobe Univ, Fac Sci, Dept Math, Kobe, Hyogo 6578501, Japan
关键词
affine algebra; Bethe ansatz; combinatorics;
D O I
10.1016/S0550-3213(98)00647-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Let B-(1) be the perfect crystal for the I-symmetric tensor representation of the quantum affine algebra U'(q)(<(sl)over cap>(n)). For a partition mu = (mu(1),...,mu(m),), elements of the tensor product B(mu(1)) circle times ... circle times B(mu(m)) can be regarded as inhomogeneous paths. We establish a bijection between a certain large CL limit of this crystal and the crystal of an (generally reducible) integrable U-q(<(sl)over cap>(n))-module, which forms a large family depending on the inhomogeneity of mu kept in the limit, For the associated one-dimensional sums, relations with the Kostka-Foulkes polynomials are clarified, and new fermionic formulae are presented. By combining their limits with the bijection, we prove or conjecture several formulae for the string functions, branching functions, coset branching functions and spinon character formula of both vertex and RSOS types. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:575 / 616
页数:42
相关论文
共 32 条
[1]   8-VERTEX SOS MODEL AND GENERALIZED ROGERS-RAMANUJAN-TYPE IDENTITIES [J].
ANDREWS, GE ;
BAXTER, RJ ;
FORRESTER, PJ .
JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (3-4) :193-266
[2]  
ARAKAWA T, 1996, COMMUN MATH PHYS, V181, P159
[3]  
BERKOVICH A, BONNTH9607
[4]   SPINONS IN CONFORMAL FIELD-THEORY [J].
BERNARD, D ;
PASQUIER, V ;
SERBAN, D .
NUCLEAR PHYSICS B, 1994, 428 (03) :612-628
[5]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[6]   SPINON BASIS FOR HIGHER-LEVEL SU(2) WZW MODELS [J].
BOUWKNEGT, P ;
LUDWIG, AWW ;
SCHOUTENS, K .
PHYSICS LETTERS B, 1995, 359 (3-4) :304-312
[7]   ONE-DIMENSIONAL CONFIGURATION SUMS IN VERTEX MODELS AND AFFINE LIE-ALGEBRA CHARACTERS [J].
DATE, E ;
JIMBO, M ;
KUNIBA, A ;
MIWA, T ;
OKADO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1989, 17 (01) :69-77
[8]  
DATE E, 1988, ADV STUD PURE MATH, V16, P17
[9]  
FEIGIN BL, HEPTH9308079
[10]  
GEORGIEV G, QALG9504024