Mechanisms for neuronal cell death and dysfunction in Huntington's disease: pathological cross-talk between the nucleus and the mitochondria?

被引:38
作者
Sawa, A [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Psychiat & Behav Sci, Dept Neurosci, Baltimore, MD 21205 USA
来源
JOURNAL OF MOLECULAR MEDICINE-JMM | 2001年 / 79卷 / 07期
关键词
Huntington's disease; huntingtin; mitochondria; nucleus; caspase;
D O I
10.1007/s001090100223
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Huntington's disease (HD) is a hereditary neurodegenerative condition caused by a characteristic mutation in the huntingtin (htt) gene. This gene was identified in 1993. Both the mitochondria and the nucleus play an important role in HD pathology. However, the precise molecular mechanisms remain unclear. A key strategy for understanding HD pathology is to identify signaling cascades initiated by mutant Htt that lead to neuronal cell death and dysfunction. Apoptotic stress induces greater mitochondrial depolarization in HD lymphoblasts than in control subjects. This leads to overactivation of caspase-3, which is capable of cleaving htt. Truncated forms of Htt, which are similar to the caspase-cleaved products in size, exist in the nucleus of HD patient and animal model brains. We hypothesize that caspases, which are activated by mitochondrial depolarization, play a role in producing truncated forms of Htt, which accumulate in the nucleus. Truncated forms of mutant Htt that accumulate in the nucleus are toxic to cells. There is growing evidence that truncated forms of mutant Htt in the nucleus influence gene transcription by binding to proteins such as CREB binding protein (CBP) response element binding protein binding protein, N-COR, glyceraldehyde-3-phosphate dehydrogenase, and p53. p53 regulates the transcription of various mitochondrial proteins which may underlie the mitochondrial abnormalities, especially the vulnerability to mitochondrial depolarization, seen in HD tissues. Taken together, we hypothesize a noxious signaling cascade between the mitochondria and the nucleus, initiated by mutant Htt, which may underlie HD pathology.
引用
收藏
页码:375 / 381
页数:7
相关论文
共 71 条
[1]   3-NITROPROPIONATE, TOXIC SUBSTANCE OF INDIGOFERA, IS A SUICIDE INACTIVATOR OF SUCCINATE-DEHYDROGENASE - (RAT-LIVER MITOCHONDRIA CARBANION-N-5 FLAVIN ADDUCTS 2-PROTON ABSTRACTION MECHANISM) [J].
ALSTON, TA ;
MELA, L ;
BRIGHT, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (09) :3767-3771
[2]   Stabilization of wild-type p53 by hypoxia-inducible factor 1α [J].
An, WG ;
Kanekal, M ;
Simon, MC ;
Maltepe, E ;
Blagosklonny, MV ;
Neckers, LM .
NATURE, 1998, 392 (6674) :405-408
[3]   Complex I defect in muscle from patients with Huntington's disease [J].
Arenas, J ;
Campos, Y ;
Ribacoba, R ;
Martín, MA ;
Rubio, JC ;
Ablanedo, P ;
Cabello, A .
ANNALS OF NEUROLOGY, 1998, 43 (03) :397-400
[4]   COENZYME Q(10) AND NICOTINAMIDE BLOCK STRIATAL LESIONS PRODUCED BY THE MITOCHONDRIAL TOXIN MALONATE [J].
BEAL, MF ;
HENSHAW, DR ;
JENKINS, BG ;
ROSEN, BR ;
SCHULZ, JB .
ANNALS OF NEUROLOGY, 1994, 36 (06) :882-888
[5]  
BEAL MF, 1993, J NEUROSCI, V13, P4181
[6]   Mitochondria, free radicals, and neurodegeneration [J].
Beal, MF .
CURRENT OPINION IN NEUROBIOLOGY, 1996, 6 (05) :661-666
[7]   Aberrant interactions of transcriptional repressor proteins with the Huntington's disease gene product, huntingtin [J].
Boutell, JM ;
Thomas, P ;
Neal, JW ;
Weston, VJ ;
Duce, J ;
Harper, PS ;
Jones, AL .
HUMAN MOLECULAR GENETICS, 1999, 8 (09) :1647-1655
[8]   CHRONIC MITOCHONDRIAL ENERGY IMPAIRMENT PRODUCES SELECTIVE STRIATAL DEGENERATION AND ABNORMAL CHOREIFORM MOVEMENTS IN PRIMATES [J].
BROUILLET, E ;
HANTRAYE, P ;
FERRANTE, RJ ;
DOLAN, R ;
LEROYWILLIG, A ;
KOWALL, NW ;
BEAL, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (15) :7105-7109
[9]   Oxidative damage and metabolic dysfunction in Huntington's disease: Selective vulnerability of the basal ganglia [J].
Browne, SE ;
Bowling, AC ;
MacGarvey, U ;
Baik, MJ ;
Berger, SC ;
Muqit, MMK ;
Bird, ED ;
Beal, MF .
ANNALS OF NEUROLOGY, 1997, 41 (05) :646-653
[10]   Huntington and DRPLA proteins selectively interact with the enzyme GAPDH [J].
Burke, JR ;
Enghild, JJ ;
Martin, ME ;
Jou, YS ;
Myers, RM ;
Roses, AD ;
Vance, JM ;
Strittmatter, WJ .
NATURE MEDICINE, 1996, 2 (03) :347-350