High-Performance Nanostructured Supercapacitors on a Sponge

被引:659
作者
Chen, Wei [1 ]
Rakhi, R. B. [1 ]
Hu, Liangbing [2 ]
Xie, Xing [3 ]
Cui, Yi [2 ]
Alshareef, H. N. [1 ]
机构
[1] KAUST, Thuwal 239556900, Saudi Arabia
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
关键词
Sponge supercapacitor; energy storage; specific capacitance; specific power; MnO(2); carbon nanotubes; ENERGY-STORAGE DEVICES; WALLED CARBON NANOTUBES; ELECTROCHEMICAL CAPACITORS; MICRO-SUPERCAPACITORS; MANGANESE OXIDE; METAL-OXIDES; ELECTRODES; BEHAVIOR; PAPER; NANOWIRES;
D O I
10.1021/nl2023433
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A simple and scalable method has been developed to fabricate nanostructured MnO(2)-carbon nanotube (CNT)-sponge hybrid electrodes. A novel supercapacitor, henceforth referred to as "sponge supercapacitor", has been fabricated using these hybrid electrodes with remarkable performance. A specific capacitance of 1230 F/g (based on the mass of MnO(2)) can be reached. Capacitors based on CNT-sponge substrates (without MnO(2)) can be operated even under a high scan rate of 200 V/s, and they exhibit outstanding cycle performance with only 2% degradation after 100000 cycles under a scan rate of 10 V/s. The MnO(2)-CNT-sponge supercapacitors show only 4% of degradation after 10000 cycles at a charge-discharge specific current of 5 A/g. The specific power and energy of the MnO(2)-CNT-sponge supercapacitors are high with values of 63 kW/kg and 31 Wh/kg, respectively. The attractive performances exhibited by these sponge supercapacitors make them potentially promising candidates for future energy storage systems.
引用
收藏
页码:5165 / 5172
页数:8
相关论文
共 47 条
  • [1] An KH, 2001, ADV FUNCT MATER, V11, P387, DOI 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO
  • [2] 2-G
  • [3] [Anonymous], 1999, ELECTROCHEMICAL SUPE
  • [4] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [5] Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes
    Bao, Lihong
    Zang, Jianfeng
    Li, Xiaodong
    [J]. NANO LETTERS, 2011, 11 (03) : 1215 - 1220
  • [6] Graphene Oxide-MnO2 Nanocomposites for Supercapacitors
    Chen, Sheng
    Zhu, Junwu
    Wu, Xiaodong
    Han, Qiaofeng
    Wang, Xin
    [J]. ACS NANO, 2010, 4 (05) : 2822 - 2830
  • [7] High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites
    Chen, Zheng
    Augustyn, Veronica
    Wen, Jing
    Zhang, Yuewei
    Shen, Meiqing
    Dunn, Bruce
    Lu, Yunfeng
    [J]. ADVANCED MATERIALS, 2011, 23 (06) : 791 - +
  • [8] Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors
    Chmiola, John
    Largeot, Celine
    Taberna, Pierre-Louis
    Simon, Patrice
    Gogotsi, Yury
    [J]. SCIENCE, 2010, 328 (5977) : 480 - 483
  • [9] Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors
    Chou, Shu-Lei
    Wang, Jia-Zhao
    Chew, Sau-Yen
    Liu, Hua-Kun
    Dou, Shi-Xue
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (11) : 1724 - 1727
  • [10] Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors
    Cottineau, T
    Toupin, M
    Delahaye, T
    Brousse, T
    Bélanger, D
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 82 (04): : 599 - 606