On the significance of expected shortfall as a coherent risk measure

被引:57
作者
Inui, K
Kijima, M [1 ]
机构
[1] Kyoto Univ, Grad Sch Econ, Sakyo Ku, Kyoto 6068501, Japan
[2] Meiji Univ, Grad Sch Global Business, Chiyoda Ku, Tokyo 1018301, Japan
关键词
value-at-risk; expected shortfall; coherent risk; historical simulation; Richardson's extrapolation;
D O I
10.1016/j.jbankfin.2004.08.005
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This article shows that any coherent risk measure is given by a convex combination of expected shortfalls, and an expected shortfall (ES) is optimal in the sense that it gives the minimum value among the class of plausible coherent risk measures. Hence, it is of great practical interest to estimate the ES with given confidence level from the market data in a stable fashion. In this article, we propose an extrapolation method to estimate the ES of interest. Some numerical results are given to show the efficiency of our method. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:853 / 864
页数:12
相关论文
共 12 条
[1]   On the coherence of expected shortfall [J].
Acerbi, C ;
Tasche, D .
JOURNAL OF BANKING & FINANCE, 2002, 26 (07) :1487-1503
[2]  
Acerbi C., 2001, EXPECTED SHORTFALL T
[3]  
ACERBI C, 2002, SPECTRAL MEASURES RI
[4]   Coherent measures of risk [J].
Artzner, P ;
Delbaen, F ;
Eber, JM ;
Heath, D .
MATHEMATICAL FINANCE, 1999, 9 (03) :203-228
[5]  
Artzner P., 1997, Journal of Risk, V10, P68
[6]  
Brezinski C., 1991, Extrapolation Methods, Theory and Practice, DOI DOI 10.1016/B978-0-444-88814-3.50004-0
[7]   THE AMERICAN PUT OPTION VALUED ANALYTICALLY [J].
GESKE, R ;
JOHNSON, HE .
JOURNAL OF FINANCE, 1984, 39 (05) :1511-1524
[8]  
INUI K, 2003, VAR SUBJECTO SIGNIFI
[9]  
Kijima M., 1996, Mathematical Finance, V6, P237, DOI DOI 10.1111/MAFI.1996.6.ISSUE-3
[10]   Dual stochastic dominance and related mean-risk models [J].
Ogryczak, W ;
Ruszczynski, A .
SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (01) :60-78