An interior-point method for semidefinite programming

被引:470
作者
Helmberg, C
Rendl, F
Vanderbei, RJ
Wolkowicz, H
机构
[1] PRINCETON UNIV,SCH ENGN & APPL SCI,PRINCETON,NJ 08544
[2] UNIV WATERLOO,DEPT COMBINATOR & OPTIMIZAT,WATERLOO,ON N2L 3G1,CANADA
关键词
semidefinite programming; interior-point methods; max-cut relaxations; max-min eigenvalue problems;
D O I
10.1137/0806020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new interior-point-based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems such as max-cut. Other applications include max-min eigenvalue problems and relaxations for the stable set problem.
引用
收藏
页码:342 / 361
页数:20
相关论文
共 30 条
  • [1] INTERIOR-POINT METHODS IN SEMIDEFINITE PROGRAMMING WITH APPLICATIONS TO COMBINATORIAL OPTIMIZATION
    ALIZADEH, F
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (01) : 13 - 51
  • [2] ALIZADEH F, 1994, PRIMAL DUAL INTERIOR
  • [3] ALIZADEH F, 1991, THESIS U MINNESOTA M
  • [4] ANSTREICHER KM, 1994, OPTIMIZATION METHODS, V3, P273
  • [5] THE MAX-CUT PROBLEM ON GRAPHS NOT CONTRACTIBLE TO K5
    BARAHONA, F
    [J]. OPERATIONS RESEARCH LETTERS, 1983, 2 (03) : 107 - 111
  • [6] Boppana R. B., 1987, 28th Annual Symposium on Foundations of Computer Science (Cat. No.87CH2471-1), P280, DOI 10.1109/SFCS.1987.22
  • [7] HIGHER-ORDER PREDICTOR-CORRECTOR INTERIOR POINT METHODS WITH APPLICATION TO QUADRATIC OBJECTIVES
    Carpenter, Tamra J.
    Lustig, Irvin J.
    Mulvey, John M.
    Shanno, David F.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (04) : 696 - 725
  • [8] Cullum J., 1975, Math Programming Study, V3, P35
  • [9] LAPLACIAN EIGENVALUES AND THE MAXIMUM CUT PROBLEM
    DELORME, C
    POLJAK, S
    [J]. MATHEMATICAL PROGRAMMING, 1993, 62 (03) : 557 - 574
  • [10] A COMPUTATIONAL STUDY OF GRAPH PARTITIONING
    FALKNER, J
    RENDL, F
    WOLKOWICZ, H
    [J]. MATHEMATICAL PROGRAMMING, 1994, 66 (02) : 211 - 239