Multiscale convergence and reiterated homogenisation

被引:207
作者
Allaire, G
Briane, M
机构
[1] UNIV PARIS 12,DEPT MATH,F-94040 CRETEIL,FRANCE
[2] UNIV PARIS 06,ANAL NUMER LAB,F-75252 PARIS 05,FRANCE
关键词
D O I
10.1017/S0308210500022757
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper generalises the notion of two-scale convergence to the case of multiple separated scales of periodic oscillations. It allows us to introduce a multi-scale convergence method for the reiterated homogenisation of partial differential equations with oscillating coefficients. This new method is applied to a model problem with a finite or infinite number of microscopic scales, namely the homogenisation of the heat equation in a composite material. Finally, it is generalised to handle the homogenisation of the Neumann problem in a perforated domain.
引用
收藏
页码:297 / 342
页数:46
相关论文
共 29 条
[1]   AN EXTENSION THEOREM FROM CONNECTED SETS, AND HOMOGENIZATION IN GENERAL PERIODIC DOMAINS [J].
ACERBI, E ;
PIAT, VC ;
DALMASO, G ;
PERCIVALE, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (05) :481-496
[2]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[3]  
Allaire G., 1993, Asymptotic Anal., V7, P81
[4]  
AMROUCHE C, 1994, CZECH MATH J, V44, P119
[5]  
[Anonymous], ANN SCUOLA NORM SUP
[6]  
[Anonymous], 1978, DOKL AKAD NAUK SSSR
[7]  
Bakhvalov N., 1989, MATH ITS APPL, V36
[8]  
BENSOUSSAN A, UNPUB HOMOGENIZATION
[9]  
BENSOUSSAN A, 1979, BANACH CTR PUBLICATI, V5, P15
[10]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI