We have used the 2.6 Angstrom structure of the rabbit sarcoplasmic reticulum Ca2+-ATPase isoform 1a, SERCA1a [Toyoshima, C., Nakasako, M., Nomura, H. and Ogawa, H. (2000) Nature 405, 647-655], to build models by homology modelling of two plasma membrane (PM) ATPases, Arabidopsis thaliana AHA2 and Saccharomyces cerevisiae PMA1. We propose that in both yeast and plant PM H+-ATPases a strictly conserved aspartate in transmembrane segment (M)6 (D684(AHA2)/D730(PMA1)), and three backbone carbonyls in M4 (I282(AHA2)/I331(PMA1), G283(AHA2)/I332(PMA1) and I285(AHA2)/V334(PMA1)) comprise a binding site for H3O+, suggesting a previously unknown mechanism for transport of protons. Comparison with the structure of the SERCA1a made it feasible to suggest a possible receptor region for the C-terminal auto-inhibitory domain extending from the phosphorylation and anchor domains into the transmembrane region. (C) 2001 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.