Automatic parameter selection for polynomial kernel

被引:27
作者
Ali, S [1 ]
Smith, KA [1 ]
机构
[1] Monash Univ, Sch Business Syst, Clayton, Vic 3800, Australia
来源
PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION | 2003年
关键词
SVM; polynomial kernel; data distribution; Bayesian inference;
D O I
10.1109/IRI.2003.1251420
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel is the heart of kernel based learning. To choose an appropriate parameter for a specific kernel is an important research issue in the data mining area. In this paper we propose an automatic parameter selection approach for polynomial kernel. The algorithm is tested on Support Vector Machines (SVM). The parameter selection is considered on the basis of prior information of the data distribution and Bayesian inference. The new approach is tested on different sizes of benchmark datasets with binary class problems as well as multi class classification problems.
引用
收藏
页码:243 / 249
页数:7
相关论文
共 21 条
[1]  
ALI S, 2003, P 18 INT C COMP THEI, P287
[2]  
ALI S, 2002, 2 INT C HYBR INT SYS, P321
[3]  
[Anonymous], P 12 C NEUR INF PROC
[4]  
[Anonymous], P ESANN99
[5]  
Blake C., 1999, Uci repository of machine learning data sets
[6]  
BOSER E, 1992, P 5 ANN ACM WORKSH C, P144
[7]  
Cristianini N, 2000, Intelligent Data Analysis: An Introduction
[8]  
ERASTO P., 2001, THESIS R NEVANLINNA
[9]  
Herbrich R., 2002, LEARNING KERNEL CLAS
[10]  
Joachims T., 1998, EUROPEAN C MACHINE L