Modelling short-term CO2 fluxes and long-term tree growth in temperate forests with ASPECTS

被引:42
作者
Rasse, DP
François, L
Aubinet, M
Kowalski, AS
Vande Walle, I
Laitat, E
Gérard, JC
机构
[1] Univ Liege, Lab Planetary & Atmospher Phys, B-4000 Liege, Belgium
[2] Gembloux Agr Univ, B-5030 Gembloux, Belgium
[3] Univ Instelling Antwerp, Dept Biol, B-2610 Antwerp, Belgium
[4] Univ Ghent, Lab Plant Ecol, B-9000 Ghent, Belgium
关键词
deciduous; eddy covariance; evergreen; forest growth; NEE;
D O I
10.1016/S0304-3800(01)00239-3
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The net ecosystem exchange (NEE) Of CO2 between temperate forests and the atmosphere governs both carbon removal from the atmosphere and forest growth. In recent years, many experiments have been conducted to determine temperate forest NEE. These data have been used by forest modellers to better understand the processes that govern CO, fluxes, and estimate the evolution of these fluxes under changing environmental conditions. Nevertheless, it is not clear whether models capable of handling short-term processes, which are mostly source-driven, can provide an accurate estimate of long-term forest growth, which is potentially more influenced by sink- and phenology-related processes. To analyse the interactions between short- and long-term processes, we developed the ASPECTS model, which predicts long-term forest growth by integrating, over time, hourly NEE estimates. Validation data consisting of measurements of NEE by eddy-covariance and forest carbon reservoir estimates were obtained from mixed deciduous and evergreen experimental forests located in Belgium. ASPECTS accurately estimated both: (1) the NEE fluxes for several years of data; and (2) the amount of carbon contained in stems, branches, leaves, fine and coarse roots. Our simulations demonstrated that: (1) NEE measurements in Belgian forests are compatible with forest growth over the course of the 20th century, and (2) that forest history and long-term processes need to be considered for accurate simulation of short-term CO2 fluxes. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:35 / 52
页数:18
相关论文
共 59 条
[1]  
[Anonymous], 1992, CENTURY users manual
[2]   Response of root respiration to changes in temperature and its relevance to global warming [J].
Atkin, OK ;
Edwards, EJ ;
Loveys, BR .
NEW PHYTOLOGIST, 2000, 147 (01) :141-154
[3]  
Aubinet M, 2000, ADV ECOL RES, V30, P113, DOI 10.1016/S0065-2504(08)60018-5
[4]   Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought [J].
Baldocchi, D .
PLANT CELL AND ENVIRONMENT, 1997, 20 (09) :1108-1122
[5]   Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest [J].
Baldocchi, DD ;
Vogel, CA ;
Hall, B .
AGRICULTURAL AND FOREST METEOROLOGY, 1997, 83 (1-2) :147-170
[6]   LITTER MASS-LOSS RATES IN PINE FORESTS OF EUROPE AND EASTERN UNITED-STATES - SOME RELATIONSHIPS WITH CLIMATE AND LITTER QUALITY [J].
BERG, B ;
BERG, MP ;
BOTTNER, P ;
BOX, E ;
BREYMEYER, A ;
DEANTA, RC ;
COUTEAUX, M ;
ESCUDERO, A ;
GALLARDO, A ;
KRATZ, W ;
MADEIRA, M ;
MALKONEN, E ;
MCCLAUGHERTY, C ;
MEENTEMEYER, V ;
MUNOZ, F ;
PIUSSI, P ;
REMACLE, J ;
DESANTO, AV .
BIOGEOCHEMISTRY, 1993, 20 (03) :127-159
[7]   Roots exert a strong influence on the temperature sensitivity of soil respiration [J].
Boone, RD ;
Nadelhoffer, KJ ;
Canary, JD ;
Kaye, JP .
NATURE, 1998, 396 (6711) :570-572
[8]   TREEDYN3 forest simulation model [J].
Bossel, H .
ECOLOGICAL MODELLING, 1996, 90 (03) :187-227
[9]   Scaling up from the individual tree to the stand level in Scots pine. I. Needle distribution, overall crown and root geometry [J].
Cermak, J ;
Riguzzi, F ;
Ceulemans, R .
ANNALES DES SCIENCES FORESTIERES, 1998, 55 (1-2) :63-88
[10]   Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models [J].
dePury, DGG ;
Farquhar, GD .
PLANT CELL AND ENVIRONMENT, 1997, 20 (05) :537-557