Changes to the Chemical Composition of Soot from Heterogeneous Oxidation Reactions

被引:35
作者
Browne, Eleanor C. [1 ]
Franklin, Jonathan P. [1 ]
Canagaratna, Manjula R. [2 ]
Massoli, Paola [2 ]
Kirchstetter, Thomas W. [3 ,5 ]
Worsnop, Douglas R. [2 ]
Wilson, Kevin R. [4 ]
Kroll, Jesse H. [1 ]
机构
[1] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA
[2] Aerodyne Res Inc, Ctr Aerosol & Cloud Chem, Billerica, MA 01821 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
POLYCYCLIC AROMATIC-HYDROCARBONS; BLACK CARBON AEROSOL; AGING TIME-SCALES; ORGANIC AEROSOL; PHOTOCHEMICAL OXIDATION; VOLATILITY MEASUREMENTS; PARTICULATE MATTER; MIXING STATE; OZONE; MASS;
D O I
10.1021/jp511507d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The atmospheric aging of soot particles, in which various atmospheric processes alter the particles' chemical and physical properties, is poorly understood and consequently is not well-represented in models. In this work, soot aging via heterogeneous oxidation by OH and ozone is investigated using an aerosol flow reactor coupled to a new high-resolution aerosol mass spectrometric technique that utilizes infrared vaporization and single-photon vacuum ultraviolet ionization. This analytical technique simultaneously measures the elemental and organic carbon components of soot, allowing for the composition of both fractions to be monitored. At oxidant exposures relevant to the particles' atmospheric lifetimes (the equivalent of several days of oxidation), the elemental carbon portion of the soot, which makes up the majority of the particle mass, undergoes no discernible changes in mass or composition. In contrast, the organic carbon (which in the case of methane flame soot is dominated by aliphatic species) is highly reactive, undergoing first the addition of oxygen-containing functional groups and ultimately the loss of organic carbon mass from fragmentation reactions that form volatile products. These changes occur on time scales comparable to those of other nonoxidative aging processes such as condensation, suggesting that further research into the combined effects of heterogeneous and condensational aging is needed to improve our ability to accurately predict the climate and health impacts of soot particles.
引用
收藏
页码:1154 / 1163
页数:10
相关论文
共 82 条
[1]   Evolution of trace gases and particles emitted by a chaparral fire in California [J].
Akagi, S. K. ;
Craven, J. S. ;
Taylor, J. W. ;
McMeeking, G. R. ;
Yokelson, R. J. ;
Burling, I. R. ;
Urbanski, S. P. ;
Wold, C. E. ;
Seinfeld, J. H. ;
Coe, H. ;
Alvarado, M. J. ;
Weise, D. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (03) :1397-1421
[2]   Kinetics of the reactions of soot surface-bound polycyclic aromatic hydrocarbons with the OH radicals [J].
Bedjanian, Yuri ;
Nguyen, Mai Lan ;
Le Bras, Georges .
ATMOSPHERIC ENVIRONMENT, 2010, 44 (14) :1754-1760
[3]   Ionization thresholds of small carbon clusters: Tunable VUV experiments and theory [J].
Belau, Leonid ;
Wheeler, Steven E. ;
Ticknor, Brian W. ;
Ahmed, Musahid ;
Leone, Stephen R. ;
Allen, Wesley D. ;
Schaefer, Henry F., III ;
Duncan, Michael A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (33) :10229-10243
[4]   The reaction probability of OH on organic surfaces of tropospheric interest [J].
Bertram, AK ;
Ivanov, AV ;
Hunter, M ;
Molina, LT ;
Molina, MJ .
JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (41) :9415-9421
[5]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552
[6]   Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer [J].
Canagaratna, M. R. ;
Jayne, J. T. ;
Jimenez, J. L. ;
Allan, J. D. ;
Alfarra, M. R. ;
Zhang, Q. ;
Onasch, T. B. ;
Drewnick, F. ;
Coe, H. ;
Middlebrook, A. ;
Delia, A. ;
Williams, L. R. ;
Trimborn, A. M. ;
Northway, M. J. ;
DeCarlo, P. F. ;
Kolb, C. E. ;
Davidovits, P. ;
Worsnop, D. R. .
MASS SPECTROMETRY REVIEWS, 2007, 26 (02) :185-222
[7]   Chemical Compositions of Black Carbon Particle Cores and Coatings via Soot Particle Aerosol Mass Spectrometry with Photoionization and Electron Ionization [J].
Canagaratna, Manjula R. ;
Massoli, Paola ;
Browne, Eleanor C. ;
Franklin, Jonathan P. ;
Wilson, Kevin R. ;
Onasch, Timothy B. ;
Kirchstetter, Thomas W. ;
Fortner, Edward C. ;
Kolb, Charles E. ;
Jayne, John T. ;
Kroll, Jesse H. ;
Worsnop, Douglas R. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2015, 119 (19) :4589-4599
[8]   Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: diurnal cycle, aging and parameterization [J].
Cheng, Y. F. ;
Su, H. ;
Rose, D. ;
Gunthe, S. S. ;
Berghof, M. ;
Wehner, B. ;
Achtert, P. ;
Nowak, A. ;
Takegawa, N. ;
Kondo, Y. ;
Shiraiwa, M. ;
Gong, Y. G. ;
Shao, M. ;
Hu, M. ;
Zhu, T. ;
Zhang, Y. H. ;
Carmichael, G. R. ;
Wiedensohler, A. ;
Andreae, M. O. ;
Poeschl, U. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (10) :4477-4491
[9]   SPECTROSCOPIC AND SOLUBILITY CHARACTERISTICS OF OXIDIZED SOOTS [J].
CHUGHTAI, AR ;
JASSIM, JA ;
PETERSON, JH ;
STEDMAN, DH ;
SMITH, DM .
AEROSOL SCIENCE AND TECHNOLOGY, 1991, 15 (02) :112-126
[10]   A global black carbon aerosol model [J].
Cooke, WF ;
Wilson, JJN .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D14) :19395-19409