L1-Norm-Based 2DPCA

被引:249
作者
Li, Xuelong [1 ]
Pang, Yanwei [2 ]
Yuan, Yuan [3 ]
机构
[1] Chinese Acad Sci, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
[2] Tianjin Univ, Sch Elect Informat Engn, Tianjin 300072, Peoples R China
[3] Aston Univ, Sch Engn & Appl Sci, Birmingham B4 7ET, W Midlands, England
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS | 2010年 / 40卷 / 04期
基金
中国国家自然科学基金;
关键词
L1; norm; outlier; subspace; two-dimensional principal component analysis (2DPCA); PRINCIPAL COMPONENT ANALYSIS; FACE; RECOGNITION; REPRESENTATION; APPEARANCE; PCA;
D O I
10.1109/TSMCB.2009.2035629
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we first present a simple but effective L1-norm-based two-dimensional principal component analysis (2DPCA). Traditional L2-norm-based least squares criterion is sensitive to outliers, while the newly proposed L1-norm 2DPCA is robust. Experimental results demonstrate its advantages.
引用
收藏
页码:1170 / 1175
页数:6
相关论文
共 25 条
[1]   On the unification of line processes, outlier rejection, and robust statistics with applications in early vision [J].
Black, MJ ;
Rangarajan, A .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1996, 19 (01) :57-91
[2]   Supervised tensor learning [J].
Dacheng Tao ;
Xuelong Li ;
Xindong Wu ;
Weiming Hu ;
Stephen J. Maybank .
KNOWLEDGE AND INFORMATION SYSTEMS, 2007, 13 (01) :1-42
[3]  
Ding C., 2006, P 23 INT C MACH LEAR, P281, DOI DOI 10.1145/1143844.1143880
[4]   Image classification using correlation tensor analysis [J].
Fu, Yun ;
Huang, Thomas S. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (02) :226-234
[5]   Face recognition using Laplacianfaces [J].
He, XF ;
Yan, SC ;
Hu, YX ;
Niyogi, P ;
Zhang, HJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (03) :328-340
[6]   Choosing parameters of kernel subspace LDA for recognition of face images under pose and illumination variations [J].
Huang, Jian ;
Yuen, Pong C. ;
Chen, Wen-Sheng ;
Lai, Jian Huang .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (04) :847-862
[7]  
Ke QF, 2005, PROC CVPR IEEE, P739
[8]  
Kong H, 2005, PROC CVPR IEEE, P1083
[9]   Generalized 2D principal component analysis for face image representation and recognition [J].
Kong, H ;
Wang, L ;
Teoh, EK ;
Li, XC ;
Wang, JG ;
Venkateswarlu, R .
NEURAL NETWORKS, 2005, 18 (5-6) :585-594
[10]   Principal component analysis based on L1-norm maximization [J].
Kwak, Nojun .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (09) :1672-1680