Regulation and mechanisms of mammalian double-strand break repair

被引:436
作者
Valerie, K [1 ]
Povirk, LF
机构
[1] Virginia Commonwealth Univ, Med Coll Virginia, Dept Radiat Oncol, Richmond, VA 23298 USA
[2] Virginia Commonwealth Univ, Med Coll Virginia, Dept Pharmacol & Toxicol, Richmond, VA 23298 USA
[3] Virginia Commonwealth Univ, Med Coll Virginia, Massey Canc Ctr, Richmond, VA 23298 USA
关键词
ATM; DNA-PK; homologous recombination; nonhomologous end-joining; P53; signal transduction;
D O I
10.1038/sj.onc.1206679
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The double-strand break (DSB) is believed to be one of the most severe types of DNA damage, and if left unrepaired is lethal to the cell. Several different types of repair act on the DSB. The most important in mammalian cells are nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR). NHEJ is the predominant type of DSB repair in mammalian cells, as opposed to lower eucaryotes, but HRR has recently been implicated in critical cell signaling and regulatory functions that are essential for cell viability. Whereas NHEJ repair appears constitutive, HRR is regulated by the cell cycle and inducible signal transduction pathways. More is known about the molecular details of NHEJ than HRR in mammalian cells. This review focuses on the mechanisms and regulation of DSB repair in mammalian cells, the signaling pathways that regulate these processes and the potential crosstalk between NHEJ and HRR, and between repair and other stress-induced pathways with emphasis on the regulatory circuitry associated with the ataxia telangiectasia mutated (ATM) protein.
引用
收藏
页码:5792 / 5812
页数:21
相关论文
共 315 条
[1]   ATM-dependent phosphorylation and accumulation of endogenous BLM protein in response to ionizing radiation [J].
Ababou, M ;
Dutertre, S ;
Lécluse, Y ;
Onclercq, R ;
Chatton, B ;
Amor-Guéret, M .
ONCOGENE, 2000, 19 (52) :5955-5963
[2]   Cell cycle checkpoint signaling through the ATM and ATR kinases [J].
Abraham, RT .
GENES & DEVELOPMENT, 2001, 15 (17) :2177-2196
[3]  
Achanta G, 2001, CANCER RES, V61, P8723
[4]   Role of ERCC1 in removal of long non-homologous tails during targeted homologous recombination [J].
Adair, GR ;
Rolig, RL ;
Moore-Faver, D ;
Zabelshansky, M ;
Wilson, JH ;
Nairn, RS .
EMBO JOURNAL, 2000, 19 (20) :5552-5561
[5]   Molecular biology of Fanconi anaemia - an old problem, a new insight [J].
Ahmad, SI ;
Hanaoka, F ;
Kirk, SH .
BIOESSAYS, 2002, 24 (05) :439-448
[6]   DNA substrate dependence of p53-mediated regulation of double-strand break repair [J].
Akyüz, N ;
Boehden, GS ;
Süsse, S ;
Rimek, A ;
Preuss, U ;
Scheidtmann, KH ;
Wiesmüller, L .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (17) :6306-6317
[7]   Intact G(2)-phase checkpoint in cells of a human cell line lacking DNA-dependent protein kinase activity [J].
AllalunisTurner, J ;
Barron, GM ;
Day, RS .
RADIATION RESEARCH, 1997, 147 (03) :284-287
[8]   DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination [J].
Allen, C ;
Kurimasa, A ;
Brenneman, MA ;
Chen, DJ ;
Nickoloff, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (06) :3758-3763
[9]  
Andegeko Y, 2001, J BIOL CHEM, V276, P38224
[10]  
Anderson Carl W., 1992, Critical Reviews in Eukaryotic Gene Expression, V2, P283