The effect of milnacipran on the firing activity of dorsal raphe serotonin (5-HT) neurons and locus coeruleus norepineprine (NE) neurons was assessed using extracellular unitary recording in chloral hydrate anesthetized rats. A 2-day treatment with milnacipran (20 or 60 mg/kg/day, s.c.) markedly decreased the firing rate of NE neurons, and it remained reduced after a 7- or a 14-day treatment. Although the suppressant effect of the alpha(2)-adrenergic agonist clonidine on the firing rate of NE neurons was markedly reduced following long-term milnacipran (60 mg/kg/day x 14 days, s.c.), that of NE remained unchanged. The firing rate of 5-HT neurons was reduced following a 2-day treatment with milnacipran (20 mg/kg/day, s.c.), but there was a partial recovery after a 7-day treatment (20 mg/kg/day, s.c.) and a complete one after a 14-day treatment (20, 40 or 60 mg/kg/day, s.c.). The suppressant effect of 5-HT and of the 5-HT1A agonist 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin) on the firing rate of 5-HT neurons was also unaltered after milnacipran (60 mg/kg/day x 14 days: s.c.). The latter milnacipran treatment did not affect the uptake of [H-3]5-HT but it inhibited that of [H-3]NE by 30% in hippocampal slices. The NE system was thus investigated in an attempt to explain the effects of milnacipran on the firing activity of 5-HT neurons. Acute injection of milnacipran suppressed the firing activity of 5-HT neurons (with an ED50 of 5.7 +/- 1.5 mg/kg, i.v.), but not in NE-denervated rats. Furthermore, the inhibitory effect of clonidine on 5-HT neuron firing activity was markedly reduced by the long-term milnacipran treatment, whereas the inhibition of electrically evoked release of [H-3]NE as well as that of [H-3]5-HT produced by the alpha(2)-adrenoceptor agonist UK 14.304 from preloaded mesencephalic slices containing the dorsal raphe was unaltered. The latter results indicate that the alpha(2)-adrenergic autoreceptor and heteroreceptor were unaffected in the raphe area by milnacipran. In conclusion, milnacipran had profound effects on the function of 5-HT and NE neurons, and the mechanism by which 5-HT neurons regained their normal firing during milnacipran treatment appeared to implicate the NE system. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.