Stationary-state skewness in two-dimensional Kardar-Parisi-Zhang type growth

被引:39
作者
Chin, CS [1 ]
den Nijs, M [1 ]
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.59.2633
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present numerical Monte Carlo results for the stationary-state properties of KPZ-type growth in two-dimensional surfaces, by evaluating the finite size scaling (FSS) behavior of the second and fourth moments W-2 and W-4 and the skewness W-3 in the Kim-Kosterlitz (KK) and body-centered solid-on-solid (BCSOS) models. Our results agree with the stationary state proposed by Lassig. The roughness exponents W(n)similar to L-alpha n obey power counting alpha(n)=n alpha, and the amplitude ratios of the moments are universal. They have the same values in both models: W-3/W-2(1.5) = - 0.27(1) and W-4/W-2(2) = + 3.15(2). Unlike in one dimension, the stationary-state skewness is not tunable, but a universal property of the stationary-state distribution. The FSS corrections to scaling in the KK model are weak and a converges well to the Kim-Kosterlitz-Lassig value alpha = 2/5. The FSS corrections to scaling in the BCSOS model are strong. Naive extrapolations yield a smaller value alpha similar or equal to 0.38(1), but are still consistent with alpha = 2/5 if the leading irrelevant corrections to the FSS scaling exponent are of order y(ir) similar or equal to - 0.6(2). [S1063-651X(99)00503-6].
引用
收藏
页码:2633 / 2641
页数:9
相关论文
共 21 条
[1]   PHASE-TRANSITION IN A RESTRICTED SOLID-ON-SOLID SURFACE-GROWTH MODEL IN 2+1 DIMENSIONS [J].
AMAR, JG ;
FAMILY, F .
PHYSICAL REVIEW LETTERS, 1990, 64 (05) :543-546
[2]  
DENNIJS M, 1985, J PHYS A-MATH GEN, V18, pL549, DOI 10.1088/0305-4470/18/9/011
[3]  
DENNIJS M, 1994, CHEM PHYSICS SOLID S, V7, pCH4
[4]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[5]  
DHAR D, 1987, PHASE TRANSIT, V9, P51, DOI 10.1080/01411598708241334
[6]   SURFACE ROUGHENING IN A HYPERCUBE-STACKING MODEL [J].
FORREST, BM ;
TANG, LH .
PHYSICAL REVIEW LETTERS, 1990, 64 (12) :1405-1408
[7]   6-VERTEX MODEL, ROUGHENED SURFACES, AND AN ASYMMETRIC SPIN HAMILTONIAN [J].
GWA, LH ;
SPOHN, H .
PHYSICAL REVIEW LETTERS, 1992, 68 (06) :725-728
[8]   KINETIC ROUGHENING PHENOMENA, STOCHASTIC GROWTH DIRECTED POLYMERS AND ALL THAT - ASPECTS OF MULTIDISCIPLINARY STATISTICAL-MECHANICS [J].
HALPINHEALY, T ;
ZHANG, YC .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 254 (4-6) :215-415
[9]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892
[10]   GROWTH IN A RESTRICTED SOLID-ON-SOLID MODEL [J].
KIM, JM ;
KOSTERLITZ, JM .
PHYSICAL REVIEW LETTERS, 1989, 62 (19) :2289-2292