The SLC16 gene family -: from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond

被引:846
作者
Halestrap, AP [1 ]
Meredith, D
机构
[1] Univ Bristol, Dept Biochem, Bristol BS8 1TD, Avon, England
[2] Univ Oxford, Dept Human Anat & Genet, Oxford OX1 3QX, England
来源
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY | 2004年 / 447卷 / 05期
关键词
lactate; intracellular pH; glycolysis; monocarboxylate transporter (MCT);
D O I
10.1007/s00424-003-1067-2
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The monocarboxylate cotransporter (MCT) family now comprises 14 members, of which only the first four (MCT1-MCT4) have been demonstrated experimentally to catalyse the proton-linked transport of metabolically important monocarboxylates such as lactate, pyruvate and ketone bodies. SLC16A10 (T-type amino-acid transporter-1, TAT1) is an aromatic amino acid transporter whilst the other members await characterization. MCTs have 12 transmembrane domains (TMDs) with intracellular N- and C-termini and a large intracellular loop between TMDs 6 and 7. MCT1 and MCT4 require a monotopic ancillary protein, CD147, for expression of functional protein at the plasma membrane. Lactic acid transport across the plasma membrane is fundamental for the metabolism of and pH regulation of all cells, removing lactic acid produced by glycolysis and allowing uptake by those cells utilizing it for gluconeogenesis (liver and kidney) or as a respiratory fuel (heart and red muscle). The properties of the different MCT isoforms and their tissue distribution and regulation reflect these roles.
引用
收藏
页码:619 / 628
页数:10
相关论文
共 74 条
[1]  
Baker SK, 2001, MUSCLE NERVE, V24, P394
[2]   Cellular and subcellular expression of monocarboxylate transporters in the pigment epithelium and retina of the rat [J].
Bergersen, L ;
Jóhannsson, E ;
Veruki, ML ;
Nagelhus, EA ;
Halestrap, A ;
Sejersted, OM ;
Ottersen, OP .
NEUROSCIENCE, 1999, 90 (01) :319-331
[3]   Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system [J].
Bergersen, L ;
Rafiki, A ;
Ottersen, OP .
NEUROCHEMICAL RESEARCH, 2002, 27 (1-2) :89-96
[4]   A novel postsynaptic density protein:: the monocarboxylate transporter MCT2 is co-localized with δ-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses [J].
Bergersen, L ;
Wærhaug, O ;
Helm, J ;
Thomas, M ;
Laake, P ;
Davies, AJ ;
Wilson, MC ;
Halestrap, AP ;
Ottersen, OP .
EXPERIMENTAL BRAIN RESEARCH, 2001, 136 (04) :523-534
[5]  
BISWAS C, 1995, CANCER RES, V55, P434
[6]   Abundance and subcellular distribution of MCT1 and MCT4 in heart and fast-twitch skeletal muscles [J].
Bonen, A ;
Miskovic, D ;
Tonouchi, M ;
Lemieux, K ;
Wilson, MC ;
Marette, A ;
Halestrap, AP .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2000, 278 (06) :E1067-E1077
[7]   Isoform-specific regulation of the lactate transporters MCT1 and MCT4 by contractile activity [J].
Bonen, A ;
Tonouchi, M ;
Miskovic, D ;
Heddle, C ;
Heikkila, JJ ;
Halestrap, AP .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2000, 279 (05) :E1131-E1138
[8]   Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes [J].
Bröer, S ;
Bröer, A ;
Schneider, HP ;
Stegen, C ;
Halestrap, AP ;
Deitmer, JW .
BIOCHEMICAL JOURNAL, 1999, 341 :529-535
[9]   Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH [J].
Bröer, S ;
Schneider, HP ;
Bröer, A ;
Rahman, B ;
Hamprecht, B ;
Deitmer, JW .
BIOCHEMICAL JOURNAL, 1998, 333 :167-174
[10]   Cloning and sequencing of the monocarboxylate transporter from mouse Ehrlich Lettre tumour cell confirms its identity as MCT1 and demonstrates that glycosylation is not required for MCT1 function [J].
Carpenter, L ;
Poole, RC ;
Halestrap, AP .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1996, 1279 (02) :157-163