Characterization of an Escherichia coli sulfite oxidase homologue reveals the role of a conserved active site cysteine in assembly and function

被引:55
作者
Brokx, SJ [1 ]
Rothery, RA [1 ]
Zhang, GJ [1 ]
Ng, DP [1 ]
Weiner, JH [1 ]
机构
[1] Univ Alberta, Dept Biochem, Membrane Prot Res Grp, Edmonton, AB T6G 2H7, Canada
关键词
D O I
10.1021/bi050621a
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report the biochemical and biophysical characterization of YedYZ, a sulfite oxidase homologue from Escherichia coli. YedY is a soluble catalytic subunit with a twin arginine leader sequence for export to the periplasm by the Tat translocation system. YedY is the only molybdoenzyme so far isolated from E. coli with the Mo-MPT form of the molybdenum cofactor. The electron paramagnetic resonance (EPR) signal of the YedY molybdenum is similar to that of known Mo-MPT containing enzymes, with the exception that only the Mo(IV) --> Mo(V) transition is observed, with a midpoint potential of 132 mV. YedZ is a membrane-intrinsic cytochrome b with six putative transmembrane helices. The single heme b of YedZ has a midpoint potential of -8 mV, determined by EPR spectroscopy of YedZ-enriched membrane preparations. YedY does not associate strongly with YedZ on the cytoplasmic membrane. However, mutation of the YedY active site Cys102 to Ser results in very efficient targeting of YedY to YedZ in the membrane, demonstrating a clear role for YedZ as the membrane anchor for YedY. Together, YedYZ comprise a well-conserved bacterial heme-molybdoenzyme found in a variety of bacteria that can be assigned to the sulfite oxidase class of enzyme.
引用
收藏
页码:10339 / 10348
页数:10
相关论文
共 67 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   MOLECULAR-CLONING AND EXPRESSION OF THE ESCHERICHIA-COLI DIMETHYL-SULFOXIDE REDUCTASE OPERON [J].
BILOUS, PT ;
WEINER, JH .
JOURNAL OF BACTERIOLOGY, 1988, 170 (04) :1511-1518
[3]   NUCLEOTIDE-SEQUENCE OF THE DMSABC OPERON ENCODING THE ANAEROBIC DIMETHYLSULFOXIDE REDUCTASE OF ESCHERICHIA-COLI [J].
BILOUS, PT ;
COLE, ST ;
ANDERSON, WF ;
WEINER, JH .
MOLECULAR MICROBIOLOGY, 1988, 2 (06) :785-795
[4]   DIMETHYL-SULFOXIDE REDUCTASE-ACTIVITY BY ANAEROBICALLY GROWN ESCHERICHIA-COLI HB101 [J].
BILOUS, PT ;
WEINER, JH .
JOURNAL OF BACTERIOLOGY, 1985, 162 (03) :1151-1155
[5]   NITRATE REDUCTASE OF ESCHERICHIA-COLI - COMPLETION OF THE NUCLEOTIDE-SEQUENCE OF THE NAR OPERON AND REASSESSMENT OF THE ROLE OF THE ALPHA-SUBUNIT AND BETA-SUBUNIT IN IRON-BINDING AND ELECTRON-TRANSFER [J].
BLASCO, F ;
IOBBI, C ;
GIORDANO, G ;
CHIPPAUX, M ;
BONNEFOY, V .
MOLECULAR & GENERAL GENETICS, 1989, 218 (02) :249-256
[6]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[7]   Phenotype MicroArrays for high-throughput phenotypic testing and assay of gene function [J].
Bochner, BR ;
Gadzinski, P ;
Panomitros, E .
GENOME RESEARCH, 2001, 11 (07) :1246-1255
[8]   Enzymatic and physiological properties of the tungsten-substituted molybdenum TMAO reductase from Escherichia coli [J].
Buc, J ;
Santini, CL ;
Giordani, R ;
Czjzek, M ;
Wu, LF ;
Giordano, G .
MOLECULAR MICROBIOLOGY, 1999, 32 (01) :159-168
[9]   Redox reactions of the pyranopterin system of the molybdenum cofactor [J].
Burgmayer, SJN ;
Pearsall, DL ;
Blaney, SM ;
Moore, EM ;
Sauk-Schubert, C .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2004, 9 (01) :59-66
[10]   Studies on the mechanism of action of xanthine oxidase [J].
Choi, EY ;
Stockert, AL ;
Leimkühler, S ;
Hille, R .
JOURNAL OF INORGANIC BIOCHEMISTRY, 2004, 98 (05) :841-848