Bifurcation structure of a periodically driven nerve pulse equation modelling cardiac conduction

被引:15
作者
Kongas, O
Von Hertzen, R
Engelbrecht, J
机构
[1] Aalto Univ, Lab Theoret & Appl Mech, FIN-02015 Helsinki, Finland
[2] Estonian Acad Sci, Inst Cybernet, EE-0026 Tallinn, Estonia
[3] Estonian Acad Sci, Inst Cybernet, EE-0026 Tallinn, Estonia
关键词
D O I
10.1016/S0960-0779(98)00056-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A novel quiescent nerve pulse equation has been used to model cardiac transmembrane action potential propagation. The bifurcation structure of this equation driven by a periodic train of Dirac delta spikes, modelling experimental action potential measurements, displays a complicated transition region which connects a conventional region of fully developed period doubling cascades to a conventional region of Arnold tongues. Within the transition region multistability is frequently encountered. Lyapunov exponents, winding numbers and firing rate maps are presented in dependence on amplitude-frequency parameters of driving. The rich variety of calculated arrhythmias and conduction blocks agrees well with measured behaviour of animal Purkinje fibres. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:119 / 136
页数:18
相关论文
共 51 条
[1]   PERIODIC AND NON-PERIODIC RESPONSES OF A PERIODICALLY FORCED HODGKIN-HUXLEY OSCILLATOR [J].
AIHARA, K ;
MATSUMOTO, G ;
IKEGAYA, Y .
JOURNAL OF THEORETICAL BIOLOGY, 1984, 109 (02) :249-269
[2]   AN ALTERNATING PERIODIC CHAOTIC SEQUENCE OBSERVED IN NEURAL OSCILLATORS [J].
AIHARA, K ;
MATSUMOTO, G ;
ICHIKAWA, M .
PHYSICS LETTERS A, 1985, 111 (05) :251-255
[3]  
AIHARA K, 1986, PHYS LETT A, V116, P313, DOI 10.1016/0375-9601(86)90578-5
[4]   UNIVERSALITY OF THE TOPOLOGY OF PERIOD DOUBLING DYNAMICAL-SYSTEMS [J].
BEIERSDORFER, P .
PHYSICS LETTERS A, 1984, 100 (08) :379-382
[5]   CRITICAL-DYNAMICS OF THE BONHOEFFER-VANDERPOL EQUATION AND ITS CHAOTIC RESPONSE TO PERIODIC STIMULATION [J].
BRAAKSMA, B ;
GRASMAN, J .
PHYSICA D, 1993, 68 (02) :265-280
[6]   DYNAMIC EQUILIBRIA AND OSCILLATIONS OF A PERIODICALLY STIMULATED EXCITABLE SYSTEM [J].
BROWN, D ;
FOWERAKER, JPA ;
MARRS, RW .
CHAOS SOLITONS & FRACTALS, 1995, 5 (3-4) :359-369
[7]   NONLINEAR DYNAMICS OF CARDIAC EXCITATION AND IMPULSE PROPAGATION [J].
CHIALVO, DR ;
JALIFE, J .
NATURE, 1987, 330 (6150) :749-752
[8]   LOW DIMENSIONAL CHAOS IN CARDIAC TISSUE [J].
CHIALVO, DR ;
GILMOUR, RF ;
JALIFE, J .
NATURE, 1990, 343 (6259) :653-657
[9]  
DOI SJ, 1995, MATH BIOSCI, V125, P229, DOI 10.1016/0025-5564(94)00035-X
[10]   ON A MODEL STATIONARY NONLINEAR-WAVE IN AN ACTIVE MEDIUM [J].
ENGELBRECHT, J ;
TOBIAS, T .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 411 (1840) :139-154