Oxidized low-density lipoprotein promotes mature dendritic cell transition from differentiating monocyte

被引:116
作者
Perrin-Cocon, L [1 ]
Coutant, F [1 ]
Agaugué, S [1 ]
Deforges, S [1 ]
André, P [1 ]
Lotteau, V [1 ]
机构
[1] INSERM, U503, Ctr Europeen Rech Virol & Immunol, F-69007 Lyon, France
关键词
D O I
10.4049/jimmunol.167.7.3785
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Proinflammatory oxidized phospholipids are generated during oxidative modification of low-density lipoproteins (LDL). The production of these proinflammatory oxidized phospholipids is controlled by secreted enzymes that circulate as proteins complexed with LDL and high-density lipoprotein. During the acute phase response to tissue injury, profound changes occur in lipoprotein enzymatic composition that alter their anti-inflammatory function. Monocytes may encounter oxidized phospholipids in vivo during their differentiation to macrophages or dendritic cells (DC). In this study we show that the presence of oxidized LDL (oxLDL) at the first day of monocyte differentiation to DC in vitro yielded phenotypically atypical cells with some functional characteristics of mature DC. Addition of oxLDL during the late stage of monocyte differentiation gave rise directly to phenotypically mature DC with reduced uptake capacity, secreting IL-12 but not IL-10, and supporting both syngeneic and allogeneic T cell stimulation. In contrast to known mediators of DC activation, oxLDL did not trigger maturation of immature DC. An intriguing possibility is that a burst of oxidized phospholipids is an endogenous activation signal for the immune system, which is tightly controlled by lipoproteins during the acute phase response.
引用
收藏
页码:3785 / 3791
页数:7
相关论文
共 50 条
[1]   Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions - A possible peroxidative role for paraoxonase [J].
Aviram, M ;
Rosenblat, M ;
Bisgaier, CL ;
Newton, RS ;
Primo-Parmo, SL ;
La Du, BN .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (08) :1581-1590
[2]   THE ACUTE-PHASE RESPONSE [J].
BAUMANN, H ;
GAULDIE, J .
IMMUNOLOGY TODAY, 1994, 15 (02) :74-80
[3]   ATHEROSCLEROSIS - BASIC MECHANISMS - OXIDATION, INFLAMMATION, AND GENETICS [J].
BERLINER, JA ;
NAVAB, M ;
FOGELMAN, AM ;
FRANK, JS ;
DEMER, LL ;
EDWARDS, PA ;
WATSON, AD ;
LUSIS, AJ .
CIRCULATION, 1995, 91 (09) :2488-2496
[4]   CD91: a receptor for heat shock protein gp96 [J].
Binder, RJ ;
Han, DK ;
Srivastava, PK .
NATURE IMMUNOLOGY, 2000, 1 (02) :151-155
[5]   Receptors for oxidized low-density lipoprotein on elicited mouse peritoneal macrophages can recognize both the modified lipid moieties and the modified protein moieties:: Implications with respect to macrophage recognition of apoptotic cells [J].
Bird, DA ;
Gillotte, KL ;
Hörkkö, S ;
Friedman, P ;
Dennis, EA ;
Witztum, JL ;
Steinberg, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6347-6352
[6]   THE SCAVENGER CELL PATHWAY FOR LIPOPROTEIN DEGRADATION - SPECIFICITY OF THE BINDING-SITE THAT MEDIATES THE UPTAKE OF NEGATIVELY-CHARGED LDL BY MACROPHAGES [J].
BROWN, MS ;
BASU, SK ;
FALCK, JR ;
HO, YK ;
GOLDSTEIN, JL .
JOURNAL OF SUPRAMOLECULAR STRUCTURE, 1980, 13 (01) :67-81
[7]  
Cabana VG, 1996, J LIPID RES, V37, P2662
[8]   CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins [J].
Calvo, D ;
GomezCoronado, D ;
Lasuncion, MA ;
Vega, MA .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 1997, 17 (11) :2341-2349
[9]   Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages:: Evidence that oxidation-specific epitopes mediate macrophage recognition [J].
Chang, MK ;
Bergmark, C ;
Laurila, A ;
Hörkkö, S ;
Han, KH ;
Friedman, P ;
Dennis, EA ;
Witztum, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6353-6358
[10]   The oxidation of lipoproteins by monocytes-macrophages - Biochemical and biological mechanisms [J].
Chisolm, GM ;
Hazen, SL ;
Fox, PL ;
Cathcart, MK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) :25959-25962