On the k-tuple domination of generalized de Brujin and Kautz digraphs

被引:14
作者
Wu, Lingye [1 ]
Shan, Erfang [1 ]
Liu, Zengrong [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
k-Tuple domination; Generalized de Brujin digraph; Generalized Kuatz digraph; Interconnection networks; DE-BRUIJN DIGRAPHS; DIRECTED-GRAPHS; TWIN DOMINATION; NUMBER; CONNECTIVITY; HYPERCUBES; ALGORITHMS; DIAMETER; DESIGN;
D O I
10.1016/j.ins.2010.07.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A vertex u in a digraph G = (VA) is said to dominate itself and vertices v such that (u, v) is an element of A. For a positive integer k, a k-tuple dominating set of G is a subset D of vertices such that every vertex in G is dominated by at least k vertices in D. The k-tuple domination number of G is the minimum cardinality of a k-tuple dominating set of G. This paper deals with the k-tuple domination problem on generalized de Bruijn and Kautz digraphs. We establish bounds on the k-tuple domination number for the generalized de Bruijn and Kautz digraphs and we obtain some conditions for the k-tuple domination number attaining the bounds. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4430 / 4435
页数:6
相关论文
共 32 条
[1]   On the k-tuple domination of de Bruijn and Kautz digraphs [J].
Araki, Toru .
INFORMATION PROCESSING LETTERS, 2007, 104 (03) :86-90
[2]   The k-tuple twin domination in de Bruijn and Kautz digraphs [J].
Araki, Toru .
DISCRETE MATHEMATICS, 2008, 308 (24) :6406-6413
[3]  
BERMOND JC, 1989, HYPERCUBE AND DISTRIBUTED COMPUTERS, P279
[4]  
Bondy J.A., 1986, GRAPH THEORY APPL
[5]   The upper bound on k-tuple domination numbers of graphs [J].
Chang, Gerard J. .
EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) :1333-1336
[6]   GENERALIZED DE BRUIJN DIGRAPHS [J].
DU, DZ ;
HWANG, FK .
NETWORKS, 1988, 18 (01) :27-38
[7]   THE HAMILTONIAN PROPERTY OF GENERALIZED DEBRUIJN DIGRAPHS [J].
DU, DZ ;
HSU, DF ;
HWANG, FK ;
ZHANG, XM .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 52 (01) :1-8
[8]   The bipancycle-connectivity of the hypercube [J].
Fang, Jywe-Fei .
INFORMATION SCIENCES, 2008, 178 (24) :4679-4687
[9]   A generalised upper bound for the k-tuple domination number [J].
Gagarin, Andrei ;
Zverovich, Vadim E. .
DISCRETE MATHEMATICS, 2008, 308 (5-6) :880-885
[10]  
Harary F, 2000, ARS COMBINATORIA, V55, P201