The use of transgenic and knock-in mice to study Huntington's disease

被引:45
作者
Hickey, MA [1 ]
Chesselet, MF [1 ]
机构
[1] Univ Calif Los Angeles, Dept Neurol, Reed Neurol Res Ctr, Geffen Sch Med, Los Angeles, CA 90095 USA
关键词
D O I
10.1159/000072863
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The trinucleotide repeat disorders comprise an ever expanding list of diseases, all of which are caused by an unstable expanded trinucleotide repeat tract. Huntington's disease (HD) is a member of this family of diseases and more specifically, is a Type II trinucleotide repeat disorder. This means that the mutation in HD is an unstable expanded polyglutamine repeat tract, which is expressed at protein level. There is no cure or beneficial treatment for this fatal neurodegenerative disorder, and patients suffer from progressive motor, cognitive and psychiatric dysfunction. Recent years has seen the development of many genetic models of HD, which allow study of the early phases of disease process, at several different levels of cell function. In addition, these models are being used to investigate the potential of a variety of therapeutic agents for clinical use. Here we review these findings, and their implication for HD pathogenesis. Copyright (C) 2002 S.Karger AG, Basel.
引用
收藏
页码:276 / 286
页数:11
相关论文
共 143 条
[1]   ALTERNATIVE EXCITOTOXIC HYPOTHESES [J].
ALBIN, RL ;
GREENAMYRE, JT .
NEUROLOGY, 1992, 42 (04) :733-738
[2]   STRUCTURE AND EXPRESSION OF THE HUNTINGTONS-DISEASE GENE - EVIDENCE AGAINST SIMPLE INACTIVATION DUE TO AN EXPANDED CAG REPEAT [J].
AMBROSE, CM ;
DUYAO, MP ;
BARNES, G ;
BATES, GP ;
LIN, CS ;
SRINIDHI, J ;
BAXENDALE, S ;
HUMMERICH, H ;
LEHRACH, H ;
ALTHERR, M ;
WASMUTH, J ;
BUCKLER, A ;
CHURCH, D ;
HOUSMAN, D ;
BERKS, M ;
MICKLEM, G ;
DURBIN, R ;
DODGE, A ;
READ, A ;
GUSELLA, J ;
MACDONALD, ME .
SOMATIC CELL AND MOLECULAR GENETICS, 1994, 20 (01) :27-38
[3]   Huntington's disease progression PET and clinical observations [J].
Andrews, TC ;
Weeks, RA ;
Turjanski, N ;
Gunn, RN ;
Watkins, LHA ;
Sahakian, B ;
Hodges, JR ;
Rosser, AE ;
Wood, NW ;
Brooks, DJ .
BRAIN, 1999, 122 :2353-2363
[4]  
[Anonymous], [No title captured]
[5]   Striatal glucose metabolism and dopamine D-2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease [J].
Antonini, A ;
Leenders, KL ;
Spiegel, R ;
Meier, D ;
Vontobel, P ;
WeigellWeber, M ;
SanchezPernaute, R ;
deYebenez, JG ;
Boesiger, P ;
Weindl, A ;
Maguire, RP .
BRAIN, 1996, 119 :2085-2095
[6]   Reduction in enkephalin and substance P messenger RNA in the striatum of early grade Huntington's disease: A detailed cellular in situ hybridization study [J].
Augood, SJ ;
Faull, RLM ;
Love, DR ;
Emson, PC .
NEUROSCIENCE, 1996, 72 (04) :1023-1036
[7]   Dopamine D-1 and D-2 receptor gene expression in the striatum in Huntington's disease [J].
Augood, SJ ;
Faull, RLM ;
Emson, PC .
ANNALS OF NEUROLOGY, 1997, 42 (02) :215-221
[8]   MOUSE HUNTINGTONS-DISEASE GENE HOMOLOG (HDH) [J].
BARNES, GT ;
DUYAO, MP ;
AMBROSE, CM ;
MCNEIL, S ;
PERSICHETTI, F ;
SRINIDHI, J ;
GUSELLA, JF ;
MACDONALD, ME .
SOMATIC CELL AND MOLECULAR GENETICS, 1994, 20 (02) :87-97
[9]   REPLICATION OF THE NEUROCHEMICAL CHARACTERISTICS OF HUNTINGTONS-DISEASE BY QUINOLINIC ACID [J].
BEAL, MF ;
KOWALL, NW ;
ELLISON, DW ;
MAZUREK, MF ;
SWARTZ, KJ ;
MARTIN, JB .
NATURE, 1986, 321 (6066) :168-171
[10]   Severe deficiencies in dopamine signaling in presymptomatic Huntington's disease mice [J].
Bibb, JA ;
Yan, Z ;
Svenningsson, P ;
Snyder, GL ;
Pieribone, VA ;
Horiuchi, A ;
Nairn, AC ;
Messer, A ;
Greengard, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6809-6814