P-glycoprotein limits oral availability, brain, and fetal penetration of saquinavir even with high doses of ritonavir

被引:147
作者
Huisman, MT
Smit, JW
Wiltshire, HR
Hoetelmans, RMW
Beijnen, JH
Schinkel, AH
机构
[1] Netherlands Canc Inst, Div Expt Therapy, NL-1066 CX Amsterdam, Netherlands
[2] F Hoffmann La Roche, Drug Dev, Welwyn Garden City, Herts, England
[3] Slotervaart Hosp, Dept Pharm & Pharmacol, Amsterdam, Netherlands
关键词
D O I
10.1124/mol.59.4.806
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The low oral bioavailability of the HIV protease inhibitor (HPI) saquinavir is dramatically increased by coadministration of the HPI ritonavir. Because saquinavir and ritonavir are substrates and inhibitors of both the drug transporter P-glycoprotein (P-gp) and of the metabolizing enzyme CYP3A4, we wanted to sort out whether the ritonavir effect is primarily mediated by inhibition of CYP3A4 or P-gp or both. P-gp is known to limit the bioavailability, brain, testis, and fetal penetration of its substrates, so effective inhibition of P-gp by ritonavir in vivo might open up pharmacological sanctuary sites for saquinavir, with the potential of beneficial effects on therapy, but also of increased toxicity. In vitro, P-gp-mediated transport of saquinavir and ritonavir was only moderately inhibited by both HPIs compared with the potent P-gp inhibitor PSC833. When [C-14]saquinavir was orally coadministered with a maximum tolerated dose of ritonavir to wild-type and P-gp-deficient mice, saquinavir bioavailability was dramatically increased in both strains, but P-gp still limited the oral bioavailability of saquinavir, and its penetration into brain and fetus. These data indicate that in vivo, ritonavir is a relatively poor P-gp inhibitor. The highly increased bioavailability of saquinavir because of ritonavir coadministration most likely results from reduced saquinavir metabolism. Importantly, our data indicate that it is unlikely that ritonavir coadministration will substantially affect the contribution of P-gp to pharmacological sanctuary sites such as brain, testis, and fetus. Thus, if one wanted to effectively open these sites for therapeutic purposes, more efficient P-gp inhibitors should be applied.
引用
收藏
页码:806 / 813
页数:8
相关论文
共 40 条
[1]   Active apical secretory efflux of the HIV protease inhibitors saquinavir and ritonavir in Caco-2 cell monolayers [J].
Alsenz, J ;
Steffen, H ;
Alex, R .
PHARMACEUTICAL RESEARCH, 1998, 15 (03) :423-428
[2]  
BOESCH D, 1991, CANCER RES, V51, P4226
[3]  
Cameron DW, 1999, AIDS, V13, P213, DOI 10.1097/00002030-199902040-00009
[4]   Placental transfer of ritonavir with zidovudine in the ex vivo placental perfusion model [J].
Casey, BM ;
Bawdon, RE .
AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 1998, 179 (03) :758-761
[5]  
Choo EF, 2000, DRUG METAB DISPOS, V28, P655
[6]   AIDS - Re-emergence of HIV after stopping therapy [J].
Chun, TW ;
Davey, RT ;
Engel, D ;
Lane, HC ;
Fauci, AS .
NATURE, 1999, 401 (6756) :874-875
[7]   THE 3 MOUSE MULTIDRUG RESISTANCE (MDR) GENES ARE EXPRESSED IN A TISSUE-SPECIFIC MANNER IN NORMAL MOUSE-TISSUES [J].
CROOP, JM ;
RAYMOND, M ;
HABER, D ;
DEVAULT, A ;
ARCECI, RJ ;
GROS, P ;
HOUSMAN, DE .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (03) :1346-1350
[8]   Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir [J].
Eagling, VA ;
Back, DJ ;
Barry, MG .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 1997, 44 (02) :190-194
[9]   Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy [J].
Finzi, D ;
Hermankova, M ;
Pierson, T ;
Carruth, LM ;
Buck, C ;
Chaisson, RE ;
Quinn, TC ;
Chadwick, K ;
Margolick, J ;
Brookmeyer, R ;
Gallant, J ;
Markowitz, M ;
Ho, DD ;
Richman, DD ;
Siliciano, RF .
SCIENCE, 1997, 278 (5341) :1295-1300
[10]  
Fitzsimmons ME, 1997, DRUG METAB DISPOS, V25, P256