The neurobiology and consequences of epilepsy in the developing brain

被引:186
作者
Holmes, GL
Ben-Ari, Y
机构
[1] Harvard Univ, Childrens Hosp, Sch Med, Ctr Res Pediat Epilepsy,Dept Neurol, Boston, MA 02115 USA
[2] Inst Neurobiol Mediterranee, INSERM, Unit 29, F-13273 Marseille, France
关键词
D O I
10.1203/00006450-200103000-00004
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Epilepsy is a disorder in which the balance between cerebral excitability and inhibition is tipped toward uncontrolled excitability. There is now clear evidence that there are distinct differences between the immature and mature brain in the pathophysiology and consequences of seizures. Both the enhanced excitability of the immature brain compared with the mature brain and the unique pathologic consequences of seizures are related to the sequential development and expression of essential signaling pathways. Although the immature brain is less vulnerable than the mature brain to seizure-induced cell death, seizures in the developing brain can result in irreversible alterations in neuronal connectivity. Developing novel strategies to treat and avert the consequences of seizures in children will require further understanding of the unique mechanisms of seizure initiation and propagation in the immature brain.
引用
收藏
页码:320 / 325
页数:6
相关论文
共 56 条
[1]   KAINIC-ACID-INDUCED SEIZURES - A DEVELOPMENTAL-STUDY [J].
ALBALA, BJ ;
MOSHE, SL ;
OKADA, R .
DEVELOPMENTAL BRAIN RESEARCH, 1984, 13 (01) :139-148
[3]   LONG-LASTING MODIFICATION OF THE SYNAPTIC PROPERTIES OF RAT CA3 HIPPOCAMPAL-NEURONS INDUCED BY KAINIC ACID [J].
BENARI, Y ;
GHO, M .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 404 :365-384
[4]   INJECTIONS OF KAINIC ACID INTO THE AMYGDALOID COMPLEX OF THE RAT - AN ELECTROGRAPHIC, CLINICAL AND HISTOLOGICAL STUDY IN RELATION TO THE PATHOLOGY OF EPILEPSY [J].
BENARI, Y ;
TREMBLAY, E ;
OTTERSEN, OP .
NEUROSCIENCE, 1980, 5 (03) :515-528
[5]   GABA(A), NMDA and AMPA receptors: a developmentally regulated 'menage a trois' [J].
BenAri, Y ;
Khazipov, R ;
Leinekugel, X ;
Caillard, O ;
Gaiarsa, JL .
TRENDS IN NEUROSCIENCES, 1997, 20 (11) :523-529
[6]   MATURATION OF KAINIC ACID SEIZURE BRAIN DAMAGE SYNDROME IN THE RAT .3. POSTNATAL-DEVELOPMENT OF KAINIC ACID BINDING-SITES IN THE LIMBIC SYSTEM [J].
BERGER, ML ;
TREMBLAY, E ;
NITECKA, L ;
BENARI, Y .
NEUROSCIENCE, 1984, 13 (04) :1095-1104
[7]   DEVELOPMENTAL-CHANGES IN INTRACELLULAR CALCIUM REGULATION IN RAT CEREBRAL-CORTEX DURING HYPOXIA [J].
BICKLER, PE ;
GALLEGO, SM ;
HANSEN, BM .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1993, 13 (05) :811-819
[8]   ANOXIA PRODUCES SMALLER CHANGES IN SYNAPTIC TRANSMISSION, MEMBRANE-POTENTIAL, AND INPUT RESISTANCE IN IMMATURE RAT HIPPOCAMPUS [J].
CHERUBINI, E ;
BENARI, Y ;
KRNJEVIC, K .
JOURNAL OF NEUROPHYSIOLOGY, 1989, 62 (04) :882-895
[9]   CHRONIC SEIZURES AND COLLATERAL SPROUTING OF DENTATE MOSSY FIBERS AFTER KAINIC ACID TREATMENT IN RATS [J].
CRONIN, J ;
DUDEK, FE .
BRAIN RESEARCH, 1988, 474 (01) :181-184
[10]   Clinical trials with neuroprotective drugs in acute ischaemic stroke: are we doing the right thing? [J].
De Keyser, J ;
Sulter, G ;
Luiten, PG .
TRENDS IN NEUROSCIENCES, 1999, 22 (12) :535-540