Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies

被引:282
作者
Barai, Pallab [1 ]
Higa, Kenneth [2 ]
Srinivasan, Venkat [1 ]
机构
[1] Argonne Natl Lab, Lemont, IL 60439 USA
[2] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
关键词
BLOCK-COPOLYMER ELECTROLYTES; LI-ION BATTERIES; METAL BATTERIES; LITHIUM/POLYMER CELLS; ELECTRODEPOSITION; ANODES; DEFORMATION; INTERFACES; KINETICS; MODEL;
D O I
10.1039/c7cp03304d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Future lithium-ion batteries must use lithium metal anodes to fulfill the demands of high energy density applications with the potential to enable affordable electric cars with 350-mile range. However, dendrite growth during charging prevents the commercialization of this technology. It has been demonstrated that the presence of a compressive mechanical stress field around a dendritic protrusion prevents growth. Several techniques based on this concept, such as protective layers, externally applied pressure and solid electrolytes have been investigated by other researchers. Because of the low coulombic efficiencies associated with the stiff protective layers and high-pressure conditions, implementation of these techniques in commercial cells is complicated. Polymer-based solid electrolytes demonstrate better efficiency and capacity retention capabilities. However, dendrite growth is still possible in polymer electrolytes at higher current densities. The simulations described in this article provide guidance on the conditions under which dendrite growth is possible in polymer cells and targets for material properties needed for dendrite prevention. Increasing the elastic modulus of the electrolyte prevents the growth of dendritic protrusions in two ways: (i) higher compressive mechanical stress leads to reduced exchange current density at the protrusion peak compared to the valley, and (ii) plastic deformation of lithium metal results in reduction of the height of the dendritic protrusion. A phase map is constructed, showing the range of operation (applied current) and design (electrolyte elastic modulus) parameters that corresponds to stable lithium deposition. It is found that increasing the yield strength of the polymer electrolyte plays a significant role in preventing dendrite growth in lithium metal anodes, providing a new avenue for further exploration.
引用
收藏
页码:20493 / 20505
页数:13
相关论文
共 69 条
[1]   Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature [J].
Akolkar, Rohan .
JOURNAL OF POWER SOURCES, 2014, 246 :84-89
[2]   Mathematical model of the dendritic growth during lithium electrodeposition [J].
Akolkar, Rohan .
JOURNAL OF POWER SOURCES, 2013, 232 :23-28
[3]  
[Anonymous], 1998, ANAL TRANSPORT PHENO
[4]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[5]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[6]   Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study [J].
Barai, Pallab ;
Higa, Kenneth ;
Srinivasan, Venkat .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) :A180-A189
[7]   ELECTROLYTIC GROWTH OF DENDRITES FROM IONIC SOLUTIONS [J].
BARTON, JL ;
BOCKRIS, JO .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 268 (1335) :485-&
[8]   Dendritic growth mechanisms in lithium/polymer cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF POWER SOURCES, 1999, 81 :925-929
[9]   Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using 7Li MRI [J].
Chang, Hee Jung ;
Ilott, Andrew J. ;
Trease, Nicole M. ;
Mohammadi, Mohaddese ;
Jerschow, Alexej ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (48) :15209-15216
[10]   Investigating Li Microstructure Formation on Li Anodes for Lithium Batteries by in Situ 6Li/7Li NMR and SEM [J].
Chang, Hee Jung ;
Trease, Nicole M. ;
Ilott, Andrew J. ;
Zeng, Dongli ;
Du, Lin-Shu ;
Jerschow, Alexej ;
Grey, Clare P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (29) :16443-16451