Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis

被引:84
作者
Gallego, ME [1 ]
Bleuyard, JY [1 ]
Daoudal-Cotterell, S [1 ]
Jallut, N [1 ]
White, CI [1 ]
机构
[1] Univ Clermont Ferrand, CNRS, UMR 6547, F-63177 Clermont Ferrand, France
关键词
Ku80; recombination; T-DNA; DNA repair; NHEJ; Arabidopsis;
D O I
10.1046/j.1365-313X.2003.01827.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Chromosomal breaks are repaired by homologous recombination (HR) or non-homologous end joining (NHEJ) mechanisms. The Ku70/Ku80 heterodimer binds DNA ends and plays roles in NHEJ and telomere maintenance in organisms ranging from yeast to humans. We have previously identified a ku80 mutant of the model plant Arabidopsis thaliana and shown the role of Ku80 in telomere homeostasis in plant cells. We show here that this mutant is hypersensitive to the DNA-damaging agent methyl methane sulphonate and has a reduced capacity to carry out NHEJ recombination. To understand the interplay between HR and NHEJ in plants, we measured HR in the absence of Ku80. We find that the frequency of intrachromosomal HR is not affected by the absence of Ku80. Previous work has clearly implicated the Ku heterodimer in Agrobacterium-mediated T-DNA transformation of yeast. Surprisingly, ku80 mutant plants show no defect in the efficiency of T-DNA transformation of plants with Agrobacterium, showing that an alternative pathway must exist in plants.
引用
收藏
页码:557 / 565
页数:9
相关论文
共 65 条
[1]   DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination [J].
Allen, C ;
Kurimasa, A ;
Brenneman, MA ;
Chen, DJ ;
Nickoloff, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (06) :3758-3763
[2]   Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance [J].
Boulton, SJ ;
Jackson, SP .
NUCLEIC ACIDS RESEARCH, 1996, 24 (23) :4639-4648
[3]   Molecular genetics of DNA repair in higher plants [J].
Britt, AB .
TRENDS IN PLANT SCIENCE, 1999, 4 (01) :20-25
[4]   T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites [J].
Brunaud, V ;
Balzergue, S ;
Dubreucq, B ;
Aubourg, S ;
Samson, F ;
Chauvin, S ;
Bechtold, N ;
Cruaud, C ;
DeRose, R ;
Pelletier, G ;
Lepiniec, L ;
Caboche, M ;
Lecharny, A .
EMBO REPORTS, 2002, 3 (12) :1152-1157
[5]   Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination [J].
Bundock, P ;
Hooykaas, PJJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (26) :15272-15275
[6]   Severe developmental defects, hypersensitivity to DNA-damaging agents, and lengthened telomeres in Arabidopsis MRE11 mutants [J].
Bundock, P ;
Hooykaas, P .
PLANT CELL, 2002, 14 (10) :2451-2462
[7]   TRANSKINGDOM T-DNA TRANSFER FROM AGROBACTERIUM-TUMEFACIENS TO SACCHAROMYCES-CEREVISIAE [J].
BUNDOCK, P ;
DENDULKRAS, A ;
BEIJERSBERGEN, A ;
HOOYKAAS, PJJ .
EMBO JOURNAL, 1995, 14 (13) :3206-3214
[8]   Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant [J].
Bundock, P ;
van Attikum, H ;
Hooykaas, P .
NUCLEIC ACIDS RESEARCH, 2002, 30 (15) :3395-3400
[9]   Engineered GFP as a vital reporter in plants [J].
Chiu, WL ;
Niwa, Y ;
Zeng, W ;
Hirano, T ;
Kobayashi, H ;
Sheen, J .
CURRENT BIOLOGY, 1996, 6 (03) :325-330
[10]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743