The evolutionary inheritance of elemental stoichiometry in marine phytoplankton

被引:407
作者
Quigg, A [1 ]
Finkel, ZV
Irwin, AJ
Rosenthal, Y
Ho, TY
Reinfelder, JR
Schofield, O
Morel, FMM
Falkowski, PG
机构
[1] Rutgers State Univ, Inst Marine & Coastal Sci, Environm Biophys & Mol Ecol Program, New Brunswick, NJ 08901 USA
[2] Rutgers State Univ, Dept Geol Sci, New Brunswick, NJ 08901 USA
[3] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA
[4] Rutgers State Univ, Coastal Ocean Observat Lab, New Brunswick, NJ 08901 USA
[5] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nature01953
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phytoplankton is a nineteenth century ecological construct for a biologically diverse group of pelagic photoautotrophs that share common metabolic functions but not evolutionary histories(1). In contrast to terrestrial plants, a major schism occurred in the evolution of the eukaryotic phytoplankton that gave rise to two major plastid superfamilies(2-4). The green superfamily appropriated chlorophyll b, whereas the red superfamily uses chlorophyll c as an accessory photosynthetic pigment(5). Fossil evidence suggests that the green superfamily dominated Palaeozoic oceans. However, after the end-Permian extinction, members of the red superfamily rose to ecological prominence. The processes responsible for this shift are obscure. Here we present an analysis of major nutrients and trace elements in 15 species of marine phytoplankton from the two superfamilies. Our results indicate that there are systematic phylogenetic differences in the two plastid types where macronutrient (carbon:nitrogen:phosphorus) stoichiometries primarily reflect ancestral pre-symbiotic host cell phenotypes, but trace element composition reflects differences in the acquired plastids. The compositional differences between the two plastid superfamilies suggest that changes in ocean redox state strongly influenced the evolution and selection of eukaryotic phytoplankton since the Proterozoic era.
引用
收藏
页码:291 / 294
页数:4
相关论文
共 27 条
[11]   Redfield revisited:: variability of C:N:P in marine microalgae and its biochemical basis [J].
Geider, RJ ;
La Roche, J .
EUROPEAN JOURNAL OF PHYCOLOGY, 2002, 37 (01) :1-17
[12]   The mesozoic radiation of eukaryotic algae: The portable plastid hypothesis [J].
Grzebyk, D ;
Schofield, O ;
Vetriani, C ;
Falkowski, PG .
JOURNAL OF PHYCOLOGY, 2003, 39 (02) :259-267
[13]  
HAECKEL E, 1990, PLANKTON STUDIEN VER
[14]  
HO TY, UNPUB J PHYCOL
[15]  
Ihaka R., 1996, J COMPUTATIONAL GRAP, V5, P299, DOI [DOI 10.1080/10618600.1996.10474713, 10.1080/10618600.1996.10474713, 10.2307/1390807]
[16]   REPLACEMENT OF ZINC BY CADMIUM IN MARINE-PHYTOPLANKTON [J].
LEE, JG ;
MOREL, FMM .
MARINE ECOLOGY PROGRESS SERIES, 1995, 127 (1-3) :305-309
[17]   Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus [J].
Martin, W ;
Rujan, T ;
Richly, E ;
Hansen, A ;
Cornelsen, S ;
Lins, T ;
Leister, D ;
Stoebe, B ;
Hasegawa, M ;
Penny, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12246-12251
[18]   The symbiotic birth and spread of plastids: How many times and whodunit? [J].
Palmer, JD .
JOURNAL OF PHYCOLOGY, 2003, 39 (01) :4-11
[19]  
PRICE N M, 1988, Biological Oceanography, V6, P443
[20]   CADMIUM AND COBALT SUBSTITUTION FOR ZINC IN A MARINE DIATOM [J].
PRICE, NM ;
MOREL, FMM .
NATURE, 1990, 344 (6267) :658-660