Nuclear genes that encode mitochondrial proteins for DNA and RNA metabolism are clustered in the Arabidopsis genome

被引:71
作者
Elo, A
Lyznik, A
Gonzalez, DO
Kachman, SD
Mackenzie, SA [1 ]
机构
[1] Univ Nebraska, Beadle Ctr Genet Res, Lincoln, NE 68588 USA
[2] Univ Nebraska, Dept Biometry, Lincoln, NE 68583 USA
关键词
D O I
10.1105/tpc.010009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The plant mitochondrial genome is complex in structure, owing to a high degree of recombination activity that subdivides the genome and increases genetic variation. The replication activity of various portions of the mitochondrial genome appears to be nonuniform, providing the plant with an ability to modulate its mitochondrial genotype during development. These and other interesting features of the plant mitochondrial genome suggest that adaptive changes have occurred in DNA maintenance and transmission that will provide insight into unique aspects of plant mitochondrial biology and mitochondrial-chloroplast coevolution. A search in the Arabidopsis genome for genes involved in the regulation of mitochondrial DNA metabolism revealed a region of chromosome III that is unusually rich in genes for mitochondrial DNA and RNA maintenance. An apparently similar genetic linkage was observed in the rice genome. Several of the genes identified within the chromosome III interval appear to target the plastid or to be targeted dually to the mitochondria and the plastid, suggesting that the process of endosymbiosis likely is accompanied by an intimate coevolution of these two organelles for their genome maintenance functions.
引用
收藏
页码:1619 / 1631
页数:13
相关论文
共 80 条
[1]   Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS [J].
Abdelnoor, RV ;
Yule, R ;
Elo, A ;
Christensen, AC ;
Meyer-Gauen, G ;
Mackenzie, SA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (10) :5968-5973
[2]  
Adams J L, 1999, Curr Opin Drug Discov Devel, V2, P96
[3]   Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants [J].
Adams, KL ;
Daley, DO ;
Qiu, YL ;
Whelan, J ;
Palmer, JD .
NATURE, 2000, 408 (6810) :354-357
[4]   Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts [J].
Adams, KL ;
Daley, DO ;
Whelan, J ;
Palmer, JD .
PLANT CELL, 2002, 14 (04) :931-943
[5]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[6]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[7]   The genome sequence of Rickettsia prowazekii and the origin of mitochondria [J].
Andersson, SGE ;
Zomorodipour, A ;
Andersson, JO ;
Sicheritz-Pontén, T ;
Alsmark, UCM ;
Podowski, RM ;
Näslund, AK ;
Eriksson, AS ;
Winkler, HH ;
Kurland, CG .
NATURE, 1998, 396 (6707) :133-140
[8]   Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana [J].
Aubourg, S ;
Lecharny, A ;
Bohlmann, J .
MOLECULAR GENETICS AND GENOMICS, 2002, 267 (06) :730-745
[9]   The mystery of the rings: structure and replication of mitochondrial genomes from higher plants [J].
Backert, S ;
Nielsen, BL ;
Borner, T .
TRENDS IN PLANT SCIENCE, 1997, 2 (12) :477-483
[10]   Phage T4-like intermediates of DNA replication and recombination in the mitochondria of the higher plant Chenopodium album (L.) [J].
Backert, S ;
Börner, T .
CURRENT GENETICS, 2000, 37 (05) :304-314