Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output

被引:159
作者
Ballmer-Hofer, Kurt [1 ]
Andersson, Anneli E. [1 ]
Ratcliffe, Laura E. [1 ]
Berger, Philipp [1 ]
机构
[1] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
基金
瑞士国家科学基金会;
关键词
ENDOTHELIAL GROWTH-FACTOR; FACTOR RECEPTOR; KINASE-ACTIVITY; SEMAPHORIN-III; SPLICE VARIANT; PDZ-BINDING; CELLS; PROTEIN; TRANSDUCTION; ENDOSOMES;
D O I
10.1182/blood-2011-01-328773
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel development by activating 3 receptor tyrosine kinases (RTKs), VEGFR-1, -2, and -3, and by binding to coreceptors such as neuropilin-1 (NRP-1). We investigated how different VEGF-A isoforms, in particular VEGF-A(165)a and VEGF-A(165)b, control the balance between VEGFR-2 recycling, degradation, and signaling. Stimulation of cells with the NRP-1-binding VEGF-A(165)a led to sequential NRP-1-mediated VEGFR-2 recycling through Rab5, Rab4, and Rab11 vesicles. Recycling was accompanied by dephosphorylation of VEGFR-2 between Rab4 and Rab11 vesicles and quantitatively and qualitatively altered signal output. In cells stimulated with VEGF-A(165)b, an isoform unable to bind NRP-1, VEGFR-2 bypassed Rab11 vesicles and was routed to the degradative pathway specified by Rab7 vesicles. Deletion of the GIPC (synectin) binding motif of NRP-1 prevented transition of VEGFR-2 through Rab11 vesicles and attenuated signaling. Coreceptor engagement was specific for VEGFR-2 because EGFR recycled through Rab11 vesicles in the absence of known coreceptors. Our data establish a distinct role of NRP-1 in VEGFR-2 signaling and reveal a general mechanism for the function of coreceptors in modulating RTK signal output. (Blood. 2011;118(3):816-826)
引用
收藏
页码:816 / 826
页数:11
相关论文
共 49 条
[1]  
Adey NB, 2000, CANCER RES, V60, P35
[2]   The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor [J].
Bache, Kristi G. ;
Stuffers, Susanne ;
Malerod, Lene ;
Slagsvold, Thomas ;
Raiborg, Camilla ;
Lechardeur, Delphine ;
Walchli, Sebastien ;
Lukacs, Gergely L. ;
Brech, Andreas ;
Stenmark, Harald .
MOLECULAR BIOLOGY OF THE CELL, 2006, 17 (06) :2513-2523
[3]  
Bates DO, 2002, CANCER RES, V62, P4123
[4]   The CMT4B disease-causing proteins MTMR2 and MTMR13/SBF2 regulate AKT signalling [J].
Berger, Philipp ;
Tersar, Kristian ;
Ballmer-Hofer, Kurt ;
Suter, Ueli .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2011, 15 (02) :307-315
[5]   Ligand-Stimulated VEGFR2 Signaling is Regulated by Co-Ordinated Trafficking and Proteolysis [J].
Bruns, Alexander F. ;
Herbert, Shane P. ;
Odell, Adam F. ;
Jopling, Helen M. ;
Hooper, Nigel M. ;
Zachary, Ian C. ;
Walker, John H. ;
Ponnambalam, Sreenivasan .
TRAFFIC, 2010, 11 (01) :161-174
[6]   VEGF-A-stimulated signalling in endothelial cells via a dual receptor tyrosine kinase system is dependent on co-ordinated trafficking and proteolysis [J].
Bruns, Alexander F. ;
Bao, Leyuan ;
Walker, John H. ;
Ponnambalam, Sreenivasan .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2009, 37 :1193-1197
[7]   Rab7: A key to lysosome biogenesis [J].
Bucci, C ;
Thomsen, P ;
Nicoziani, P ;
McCarthy, J ;
van Deurs, B .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (02) :467-480
[8]  
Cai HB, 1999, J NEUROSCI, V19, P6519
[9]   Vascular endothelial growth factor-induced endothelial cell proliferation is regulated by interaction between VEGFR-2, SH-PTP1 and eNOS [J].
Cai, J ;
Jiang, WG ;
Ahmed, A ;
Boulton, M .
MICROVASCULAR RESEARCH, 2006, 71 (01) :20-31
[10]   Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR [J].
Cebe-Suarez, Stephanie ;
Gruenewald, Felix S. ;
Jaussi, Rolf ;
Li, Xiujuan ;
Claesson-Welsh, Lena ;
Spillmann, Dorothe ;
Mercer, Andrew A. ;
Prota, Andrea E. ;
Ballmer-Hofer, Kurt .
FASEB JOURNAL, 2008, 22 (08) :3078-3086