Akt signaling in skeletal muscle: regulation by exercise and passive stretch

被引:151
作者
Sakamoto, K
Aschenbach, WG
Hirshman, MF
Goodyear, LJ
机构
[1] Joslin Diabet Ctr, Div Res, Metab Sect, Boston, MA 02215 USA
[2] Brigham & Womens Hosp, Dept Med, Boston, MA 02215 USA
[3] Harvard Univ, Sch Med, Boston, MA 02215 USA
[4] Yokohama City Univ, Grad Sch Integrated Sci, Yokohama, Kanagawa 232, Japan
来源
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM | 2003年 / 285卷 / 05期
关键词
contraction; fiber type; glycogen synthase kinase-3; glycogen synthase;
D O I
10.1152/ajpendo.00228.2003
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Akt/protein kinase B is a serine/threonine kinase that has emerged as a critical signaling component for mediating numerous cellular responses. Contractile activity has recently been demonstrated to stimulate Akt signaling in skeletal muscle. Whether physiological exercise in vivo activates Akt is controversial, and the initiating factors that result in the stimulation of Akt during contractile activity are unknown. In the current study, we demonstrate that treadmill running exercise of rats using two different protocols ( intermediate high or high-intensity exhaustive exercise) significantly increases Akt activity and phosphorylation in skeletal muscle composed of various fiber types. To determine if Akt activation during contractile activity is triggered by mechanical forces applied to the skeletal muscle, isolated skeletal muscles were incubated and passively stretched. Passive stretch for 10 min significantly increased Akt activity (2-fold) in the fast-twitch extensor digitorum longus (EDL) muscle. However, stretch had no effect on Akt in the slow-twitch soleus muscle, although there was a robust phosphorylation of the stress-activated protein kinase p38. Similar to contraction, stretch-induced Akt activation in the EDL was fully inhibited in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin, whereas glycogen synthase kinase-3 (GSK3) phosphorylation was only partially inhibited. Stretch did not cause dephosphorylation of glycogen synthase on GSK3-targeted sites in the absence or presence of wortmannin. We conclude that physiological exercise in vivo activates Akt in multiple skeletal muscle fiber types and that mechanical tension may be a part of the mechanism by which contraction activates Akt in fast-twitch muscles.
引用
收藏
页码:E1081 / E1088
页数:8
相关论文
共 49 条
[1]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[2]   ON A POSSIBLE ROLE OF IMP IN THE REGULATION OF PHOSPHORYLASE-ACTIVITY IN SKELETAL-MUSCLE [J].
ARAGON, JJ ;
TORNHEIM, K ;
LOWENSTEIN, JM .
FEBS LETTERS, 1980, 117 :K56-K64
[3]  
ARMSTRONG RB, 1993, J EXP BIOL, V176, P135
[4]   The muscle-specific protein phosphatase PP1G/RGL(GM) is essential for activation of glycogen synthase by exercise [J].
Aschenbach, WG ;
Suzuki, Y ;
Breeden, K ;
Prats, C ;
Hirshman, MF ;
Dufresne, SD ;
Sakamoto, K ;
Vilardo, PG ;
Steele, M ;
Kim, JH ;
Jing, SL ;
Goodyear, LJ ;
DePaoli-Roach, AA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (43) :39959-39967
[5]   PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2 [J].
Balendran, A ;
Casamayor, A ;
Deak, M ;
Paterson, A ;
Gaffney, P ;
Currie, R ;
Downes, CP ;
Alessi, DR .
CURRENT BIOLOGY, 1999, 9 (08) :393-404
[6]   Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA [J].
Biondi, RM ;
Cheung, PCF ;
Casamayor, A ;
Deak, M ;
Currie, RA ;
Alessi, DR .
EMBO JOURNAL, 2000, 19 (05) :979-988
[7]   Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress - Evidence for cross-talk between the insulin and SAPK2/p38 mitogen-activated protein kinase signaling pathways [J].
Blair, AS ;
Hajduch, E ;
Litherland, GJ ;
Hundal, HS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36293-36299
[8]  
BONDAR RJL, 1974, CLIN CHEM, V20, P586
[9]   Static stretch increases c-Jun NH2-terminal kinase activity and p38 phosphorylation in rat skeletal muscle [J].
Boppart, MD ;
Hirshman, MF ;
Sakamoto, K ;
Fielding, RA ;
Goodyear, LJ .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2001, 280 (02) :C352-C358
[10]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3