A process-convolution approach to modelling temperatures in the North Atlantic Ocean

被引:264
作者
Higdon, D [1 ]
机构
[1] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27708 USA
关键词
Bayesian inference; moving average; non-stationarity; oceanography; space-time modelling; spatial correlation;
D O I
10.1023/A:1009666805688
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper develops a process-convolution approach for space-time modelling. With this approach, a dependent process is constructed by convolving a simple, perhaps independent, process. Since the convolution kernel may evolve over space and time, this approach lends itself to specifying models with non-stationary dependence structure. The model is motivated by an application from oceanography: estimation of the mean temperature field in the North Atlantic Ocean as a function of spatial location and time. The large amount of this data poses some difficulties; hence computational considerations weigh heavily in some modelling aspects. A Bayesian approach is taken here which relies on Markov chain Monte Carlo for exploring the posterior distribution.
引用
收藏
页码:173 / 190
页数:18
相关论文
共 45 条
[1]  
Barnes S., 1964, J. Appl. Meteor., V3, P396, DOI [DOI 10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO
[2]  
2, 10.1175/1520-0450(1964)0032.0.CO
[3]  
2, DOI 10.1175/1520-0450(1964)0032.0.CO
[4]  
2]
[5]  
BERRY RP, 1996, J AGR BIOL ECOLOGICA, V1, P297
[6]   BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS [J].
BESAG, J ;
GREEN, P ;
HIGDON, D ;
MENGERSEN, K .
STATISTICAL SCIENCE, 1995, 10 (01) :3-41
[7]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[8]  
BESAG J, 1993, J ROYAL STAT SOC B, V16, P395
[9]   MULTIVARIATE SPATIAL INTERPOLATION AND EXPOSURE TO AIR-POLLUTANTS [J].
BROWN, PJ ;
LE, ND ;
ZIDEK, JV .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1994, 22 (04) :489-509
[10]   Twentieth-century sea surface temperature trends [J].
Cane, MA ;
Clement, AC ;
Kaplan, A ;
Kushnir, Y ;
Pozdnyakov, D ;
Seager, R ;
Zebiak, SE ;
Murtugudde, R .
SCIENCE, 1997, 275 (5302) :957-960