Deactylase inhibitors disrupt cellular complexes containing protein phosphatases and deacetylases

被引:112
作者
Brush, MH [1 ]
Guardiola, A [1 ]
Connor, JH [1 ]
Yao, TP [1 ]
Shenolikar, S [1 ]
机构
[1] Duke Univ, Med Ctr, Dept Pharmacol & Canc Biol, Durham, NC 27710 USA
关键词
D O I
10.1074/jbc.M310997200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Affinity isolation of protein serine/threonine phosphatases on the immobilized phosphatase inhibitor microcystin-LR identified histone deacetylase 1(HDAC1), HDAC6, and HDAC10 as novel components of cellular phosphatase complexes. Other HDACs, specifically HDAC2, -3, -4, and -5, were excluded from such complexes. In vitro biochemical studies showed that recombinant HDAC6, but not HDAC4, bound directly to the protein phosphatase ( PP) 1 catalytic subunit. No association was observed between HDAC6 and PP2A, another major protein phosphatase. PP1 binding was mapped to the second catalytic domain and adjacent C-terminal sequences in HDAC6, and treatment of cells with trichostatin A (TSA) disrupted endogenous HDAC6.PP1 complexes. Consistent with the inhibition of tubulin deactylase activity of HDAC6, TSA enhanced cellular tubulin acetylation, and acetylated tubulin was present in the PP1 complexes from TSA-treated cells. Trapoxin B, a weak HDAC6 inhibitor, and calyculin A, a cell-permeable phosphatase inhibitor, had no effect on the stability of the HDAC6.PP1 complexes or on tubulin acetylation. Mutations that inactivated HDAC6 prevented its incorporation into cellular PP1 complexes and suggested that when bound together both enzymes were active. Interestingly, TSA disrupted all the cellular HDAC.phosphatase complexes analyzed. This study provided new insight into the mechanism by which HDAC inhibitors elicited coordinate changes in cellular protein phosphorylation and acetylation and suggested that changes in these protein modifications at multiple subcellular sites may contribute to the known ability of HDAC inhibitors to suppress cell growth and transformation.
引用
收藏
页码:7685 / 7691
页数:7
相关论文
共 52 条
[1]   Association of a protein phosphatase 1 activity with the human factor C1 (HCF) complex [J].
Ajuh, PM ;
Browne, GJ ;
Hawkes, NA ;
Cohen, PTW ;
Roberts, SGE ;
Lamond, AI .
NUCLEIC ACIDS RESEARCH, 2000, 28 (03) :678-686
[2]   Histone hyperacetylation induced by histone deacetylase inhibitors is not sufficient to cause growth inhibition in human dermal fibroblasts [J].
Brinkmann, H ;
Dahler, AL ;
Popa, C ;
Serewko, MM ;
Parsons, PG ;
Gabrielli, BG ;
Burgess, AJ ;
Saunders, NA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (25) :22491-22499
[3]   Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1α to the endoplasmic reticulum and promotes dephosphorylation of the α subunit of eukaryotic translation initiation factor 2 [J].
Brush, MH ;
Weiser, DC ;
Shenolikar, S .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (04) :1292-1303
[4]   Identification of protein phosphatase-1-binding proteins by microcystin-biotin affinity chromatography [J].
Campos, M ;
Fadden, P ;
Alms, G ;
Qian, ZD ;
Haystead, TAJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (45) :28478-28484
[5]   Attenuation of a phosphorylation-dependent activator by an HDAC-PP1 complex [J].
Canettieri, G ;
Morantte, I ;
Guzmán, E ;
Asahara, H ;
Herzig, S ;
Anderson, SD ;
Yates, JR ;
Montminy, M .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (03) :175-181
[6]   Increased Ser-10 phosphorylation of histone H3 in mitogen-stimulated and oncogene-transformed mouse fibroblasts [J].
Chadee, DN ;
Hendzel, MJ ;
Tylipski, CP ;
Allis, CD ;
Bazett-Jones, DP ;
Wright, JA ;
Davie, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (35) :24914-24920
[7]  
Chang TH, 2002, CLIN CANCER RES, V8, P1206
[8]   Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation [J].
Cheung, P ;
Tanner, KG ;
Cheung, WL ;
Sassone-Corsi, P ;
Denu, JM ;
Allis, CD .
MOLECULAR CELL, 2000, 5 (06) :905-915
[9]   Signaling to chromatin through histone modifications [J].
Cheung, P ;
Allis, CD ;
Sassone-Corsi, P .
CELL, 2000, 103 (02) :263-271
[10]   Mitotic phosphorylation of histone H3: Spatio-temporal regulation by mammalian aurora kinases [J].
Crosio, C ;
Fimia, GM ;
Loury, R ;
Kimura, M ;
Okano, Y ;
Zhou, HY ;
Sen, S ;
Allis, CD ;
Sassone-Corsi, P .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (03) :874-885