Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films

被引:245
作者
Yap, Boon Kar [1 ]
Xia, Ruidong [1 ,2 ]
Campoy-Quiles, Mariano [1 ]
Stavrinou, Paul N. [1 ]
Bradley, Donal D. C. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England
[2] Hebei Univ, Coll Phys Sci & Technol, Baoding 071002, Hebei, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1038/nmat2165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The combination of efficient light emission and high charge-carrier mobility has thus far proved elusive for polymer semiconductors, with high mobility typically achieved by cofacial pi-electron system to pi-electron system interactions that quench exciton luminescence(1,2). We report a new strategy, comprising the introduction of a limited number of more effective hopping sites between otherwise relatively isolated, and thus highly luminescent, polyfluorene chains. Our approach results in polymer films with large mobility (mu approximate to 3-6 x 10(-2) cm(2) V-1 s(-1)) and simultaneously excellent light-emission characteristics. These materials are expected to be of interest for light-emitting transistors(3), light-emitting diode sources for optical communications(4) and may offer renewed hope for electrically pumped laser action(2,5,6). In the last context, optically pumped distributed feedback lasers comprising one-dimensional etched silica grating structures coated with polymer have state-of-the-art excitation thresholds (as low as 30Wcm(-2) (0.1 nJ per pulse or 0.3 mu J cm(-2)) for 10 Hz, 12 ns, 390nm excitation) and slope efficiencies (up to 11%).
引用
收藏
页码:376 / 380
页数:5
相关论文
共 32 条
[1]   Charge carrier mobility in blends of poly(9,9-dioctylfluorene) and poly(3-hexylthiophene) [J].
Babel, A ;
Jenekhe, SA .
MACROMOLECULES, 2003, 36 (20) :7759-7764
[2]   A polymer light-emitting diode as an optical communication light source [J].
Barlow, Iain A. ;
Kreouzis, Theo ;
Lidzey, David G. .
ORGANIC ELECTRONICS, 2007, 8 (05) :621-624
[3]   Dispersive electron transport in an electroluminescent polyfluorene copolymer measured by the current integration time-of-flight method [J].
Campbell, AJ ;
Bradley, DDC ;
Antoniadis, H .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2133-2135
[4]   Ellipsometric characterization of the optical constants of polyfluorene gain media [J].
Campoy-Quiles, M ;
Heliotis, G ;
Xia, RD ;
Ariu, M ;
Pintani, M ;
Etchegoin, P ;
Bradley, DDC .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (06) :925-933
[5]   Interplay of physical structure and photophysics for a liquid crystalline polyfluorene [J].
Grell, M ;
Bradley, DDC ;
Ungar, G ;
Hill, J ;
Whitehead, KS .
MACROMOLECULES, 1999, 32 (18) :5810-5817
[6]  
Grozema FC, 2001, ADV MATER, V13, P1627, DOI 10.1002/1521-4095(200111)13:21<1627::AID-ADMA1627>3.0.CO
[7]  
2-U
[8]   Low-threshold lasers based on a high-mobility semiconducting polymer [J].
Heliotis, G ;
Choulis, SA ;
Itskos, G ;
Xia, R ;
Murray, R ;
Stavrinou, PN ;
Bradley, DDC .
APPLIED PHYSICS LETTERS, 2006, 88 (08)
[9]   Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback [J].
Heliotis, G ;
Xia, RD ;
Turnbull, GA ;
Andrew, P ;
Barnes, WL ;
Samuel, IDW ;
Bradley, DDC .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (01) :91-97
[10]   Semiconducting polymers: A new class of solid-state laser materials [J].
Hide, F ;
DiazGarcia, MA ;
Schwartz, BJ ;
Andersson, MR ;
Pei, QB ;
Heeger, AJ .
SCIENCE, 1996, 273 (5283) :1833-1836