Spark plasma sintering of Al substituted LiHf2(PO4)3 solid electrolytes

被引:31
作者
Chang, CM
Hong, SH [1 ]
Park, HM
机构
[1] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151742, South Korea
[2] Seoul Natl Univ, Nanosyst Inst, Natl Core Res Ctr, Seoul 151742, South Korea
[3] Korea Res Inst Stand & Sci, New Mat Evaluat Ctr, Taejon 305600, South Korea
关键词
lithium hafnium phosphate; spark plasma sintering; ionic conductivity; NASICON;
D O I
10.1016/j.ssi.2005.07.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Al substituted Li1+xAlxHf2-x(PO4)(3) (x=0.0 similar to 0.5) solid electrolytes were prepared by conventional sintering (CS) and spark plasma sintering (SPS), and the Li+ ion conductivity of the sintered pellets was examined using an impedance analyzer. All the samples exhibited a rhombohedral NASICON-type structure. SPS improved the densification compared to CS, and A1 substitution further increased the sample density resulting in a maximum density of similar to 90%. The Li+ ion conductivity increased in proportion to the sample density and the highest conductivity of 1.1 x 10(-4) Scm(-1) was found in the Li1.5Al0.5Hf1.5(PO4)(3) SPS specimen, which is comparable to the best value reported elsewhere. The activation energy of the total conductivity (bulk+grain boundary) reduced from 0.39 to 0.28 eV with Al substitution. The enhanced conductivity was discussed in terms of the densification, bottleneck size, and lithium ion content. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:2583 / 2587
页数:5
相关论文
共 17 条
[1]   Fast Li-circle plus conducting ceramic electrolytes [J].
Adachi, GY ;
Imanaka, N ;
Aono, H .
ADVANCED MATERIALS, 1996, 8 (02) :127-+
[2]   IONIC-CONDUCTIVITY OF THE LITHIUM TITANIUM PHOSPHATE (LI1+XALXTI2-X(PO4)3), (LI1+XSCXTI2-X(PO4)3), (LI1+XYXTI2-X(PO4)3), (LI1+XLAXTI2-X(PO4)3 SYSTEMS [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, GY .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (02) :590-591
[3]   ELECTRICAL-PROPERTIES OF SINTERED LITHIUM TITANIUM PHOSPHATE CERAMICS (LI1+XMXTI2-X(PO4)3, M-3+ = AL-3+, SC-3+, OR Y-3+) [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
CHEMISTRY LETTERS, 1990, (10) :1825-1828
[4]   ELECTRICAL-PROPERTIES AND CRYSTAL-STRUCTURE OF SOLID-ELECTROLYTE BASED ON LITHIUM HAFNIUM PHOSPHATE LIHF2(PO4)3 [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, GY .
SOLID STATE IONICS, 1993, 62 (3-4) :309-316
[5]   THE ELECTRICAL-PROPERTIES OF CERAMIC ELECTROLYTES FOR LIMXTI2-X(PO4)3+YLI2O, M = GE, SN, HF, AND ZR SYSTEMS [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (07) :1827-1833
[6]   Spark plasma sintering of LiTi2(PO4)3-based solid electrolytes [J].
Chang, CM ;
Lee, YI ;
Hong, SH ;
Park, HM .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2005, 88 (07) :1803-1807
[7]   Densification of LiTi(PO4)3-based solid electrolytes by spark-plasma-sintering [J].
Kobayashi, Y ;
Takeuchi, T ;
Tabuchi, M ;
Ado, K ;
Kageyama, H .
JOURNAL OF POWER SOURCES, 1999, 81 :853-858
[8]   IONIC-CONDUCTIVITY OF LIM2(PO4)3 (M=TI, ZR, HF) AND RELATED COMPOSITIONS [J].
KUWANO, J ;
SATO, N ;
KATO, M ;
TAKANO, K .
SOLID STATE IONICS, 1994, 70 :332-336
[9]   NASICON to scandium wolframate transition in Li1+xMxHf2-x(PO4)3 (M = Cr, Fe):: structure and ionic conductivity [J].
Losilla, ER ;
Bruque, S ;
Aranda, MAG ;
Moreno-Real, L ;
Morin, E ;
Quarton, M .
SOLID STATE IONICS, 1998, 112 (1-2) :53-62
[10]   Relationship between activation energy and bottleneck size for Li+ ion conduction in NASICON materials of composition LiMM′(PO4)3; M, M′ = Ge, Ti, Sn, Hf [J].
Martinez-Juarez, A ;
Pecharroman, C ;
Iglesias, JE ;
Rojo, JM .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (02) :372-375