Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication

被引:82
作者
Rosendal, KR
Wild, K
Montoya, G
Sinning, L
机构
[1] Zentrum Biochem, D-69120 Heidelberg, Germany
[2] European Mol Biol Lab, D-69115 Heidelberg, Germany
关键词
D O I
10.1073/pnas.2436132100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Targeting of secretory and membrane proteins by the signal recognition particle (SRP) is evolutionarily conserved, and the multidomain protein SRP54 acts as the key player in SRP-mediated protein transport. Binding of a signal peptide to SRP54 at the ribosome is coordinated with GTP binding and subsequent complex formation with the SRP receptor. Because these functions are localized to distinct domains of SRP54, communication between them is essential. We report the crystal structures of SRP54 from the Archaeon Sulfolobus solfataricus with and without its cognate SRP RNA binding site (helix 8) at 4-Angstrom resolution. The two structures show the flexibility of the SRP core and the position of SRP54 relative to the RNA. A long linker helix connects the GTPase (G domain) with the signal peptide binding (M) domain, and a hydrophobic contact between the N and M domains relates the signal peptide binding site to the G domain. Hinge regions are identified in the linker between the G and M domains (292-LGMGD) and in the N-terminal part of the M domain, which allow for structural rearrangements within SRP54 upon signal peptide binding at the ribosome.
引用
收藏
页码:14701 / 14706
页数:6
相关论文
共 59 条
[1]   The ribosome regulates the GTPase of the β-subunit of the signal recognition particle receptor [J].
Bacher, G ;
Pool, M ;
Dobberstein, B .
JOURNAL OF CELL BIOLOGY, 1999, 146 (04) :723-730
[2]   Regulation by the ribosome of the GTPase of the signal-recognition particle during protein targeting [J].
Bacher, G ;
Lutcke, H ;
Jungnickel, B ;
Rapoport, TA ;
Dobberstein, B .
NATURE, 1996, 381 (6579) :248-251
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   ALSCRIPT - A TOOL TO FORMAT MULTIPLE SEQUENCE ALIGNMENTS [J].
BARTON, GJ .
PROTEIN ENGINEERING, 1993, 6 (01) :37-40
[5]   Crystal structure of the ribonucleoprotein core of the signal recognition particle [J].
Batey, RT ;
Rambo, RP ;
Lucast, L ;
Rha, B ;
Doudna, JA .
SCIENCE, 2000, 287 (5456) :1232-+
[6]   Structural and energetic analysis of RNA recognition by a universally conserved protein from the signal recognition particle [J].
Batey, RT ;
Sagar, MB ;
Doudna, JA .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (01) :229-246
[7]  
BOURNE HR, 1991, NATURE, V349, P117, DOI 10.1038/349117a0
[8]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[9]   Crystal structure of the conserved subdomain of human protein SRP54M at 2.1 Å resolution:: Evidence for the mechanism of signal peptide binding [J].
Clemons, WM ;
Gowda, K ;
Black, SD ;
Zwieb, C ;
Ramakrishnan, V .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 292 (03) :697-705
[10]   Mapping the signal sequence-binding site on SRP reveals a significant role for the NG domain [J].
Cleverley, RM ;
Gierasch, LM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (48) :46763-46768