Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4

被引:143
作者
Bryans, M [1 ]
Valenzano, MC [1 ]
Stamato, TD [1 ]
机构
[1] Lankenau Med Res Ctr, Wynnewood, PA 19096 USA
来源
MUTATION RESEARCH-DNA REPAIR | 1999年 / 433卷 / 01期
关键词
DNA double-strand break repair; DNA ligase IV; XRCC4; protein stability;
D O I
10.1016/S0921-8777(98)00063-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
XR-1 is a CHO mutant cell line defective in double strand break repair and V(D)J recombination. These defects are due to a deletion of the XRCC4 gene which encodes a 38-kDa nuclear phosphoprotein. Recent studies have shown that XRCC4 interacts with and enhances the activity of DNA ligase IV in vitro. In this study we investigate the effect of the absence of XRCC4 on the level of DNA ligase IV in XR-1 cells. Western blot analysis indicates that levels of DNA ligase IV protein are almost undetectable in these cells, however, introduction of the XRCC4 cDNA into XR-1 resulted in a return to wild type levels of the protein. Furthermore, analysis of DNA Ligase TV mRNA showed equivalent levels in both XR-1 and XRCC4 transfected XR-1 indicating that the altered level of DNA ligase IV is not due to a change in the expression of the gene. These data strongly suggest that an important function of XRCC4 is to stabilize the DNA ligase IV protein. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 27 条
[1]   DEFECTIVE DNA-DEPENDENT PROTEIN-KINASE ACTIVITY IS LINKED TO V(D)J RECOMBINATION AND DNA-REPAIR DEFECTS ASSOCIATED WITH THE MURINE SCID MUTATION [J].
BLUNT, T ;
FINNIE, NJ ;
TACCIOLI, GE ;
SMITH, GCM ;
DEMENGEOT, J ;
GOTTLIEB, TM ;
MIZUTA, R ;
VARGHESE, AJ ;
ALT, FW ;
JEGGO, PA ;
JACKSON, SP .
CELL, 1995, 80 (05) :813-823
[2]   Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance [J].
Boulton, SJ ;
Jackson, SP .
NUCLEIC ACIDS RESEARCH, 1996, 24 (23) :4639-4648
[3]   Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways [J].
Boulton, SJ ;
Jackson, SP .
EMBO JOURNAL, 1996, 15 (18) :5093-5103
[4]   AN INTERACTION BETWEEN THE MAMMALIAN DNA-REPAIR PROTEIN XRCC1 AND DNA LIGASE-III [J].
CALDECOTT, KW ;
MCKEOWN, CK ;
TUCKER, JD ;
LJUNGQUIST, S ;
THOMPSON, LH .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (01) :68-76
[5]   Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells [J].
Caldecott, KW ;
Tucker, JD ;
Stanker, LH ;
Thompson, LH .
NUCLEIC ACIDS RESEARCH, 1995, 23 (23) :4836-4843
[6]   From BRCA1 to RAP1: A widespread BRCT module closely associated with DNA repair [J].
Callebaut, I ;
Mornon, JP .
FEBS LETTERS, 1997, 400 (01) :25-30
[7]   Disruption of DNA-PK in Ku80 mutant xrs-6 and the implications in DNA double-strand break repair [J].
Chen, FQ ;
Peterson, SR ;
Story, MD ;
Chen, DJ .
MUTATION RESEARCH-DNA REPAIR, 1996, 362 (01) :9-19
[8]   Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV [J].
Critchlow, SE ;
Bowater, RP ;
Jackson, SP .
CURRENT BIOLOGY, 1997, 7 (08) :588-598
[9]   ACCURATE TRANSCRIPTION INITIATION BY RNA POLYMERASE-II IN A SOLUBLE EXTRACT FROM ISOLATED MAMMALIAN NUCLEI [J].
DIGNAM, JD ;
LEBOVITZ, RM ;
ROEDER, RG .
NUCLEIC ACIDS RESEARCH, 1983, 11 (05) :1475-1489
[10]  
GETTS RC, 1994, J BIOL CHEM, V269, P15981