Synchronization and communication using semiconductor lasers with optoelectronic feedback

被引:102
作者
Abarbanel, HDI [1 ]
Kennel, MB
Illing, L
Tang, S
Chen, HF
Liu, JM
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, Dept Phys, Inst Nonlinear Sci, La Jolla, CA 92093 USA
[2] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[3] Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, Inst Nonlinear Sci, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
chaos; communication system nonlinearities; optical communication; optoelectronic devices; synchronization;
D O I
10.1109/3.952542
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Semiconductor lasers provide an excellent opportunity for communication using chaotic waveforms. We discuss the characteristics and the synchronization of two semiconductor lasers with optoelectronic feedback. The systems exhibit broadband chaotic intensity oscillations whose dynamical dimension generally increases with the time delay in the feedback loop. We explore the robustness of this synchronization with parameter mismatch in the lasers, with mismatch in the optoelectronic feedback delay, and with the strength of the coupling between the systems. Synchronization is robust to mismatches between the intrinsic parameters of the lasers, but it is sensitive to mismatches of the time delay in the transmitter and receiver feedback loops. An open-loop receiver configuration Is suggested, eliminating feedback delay mismatch issues. Communication strategies for arbitrary amplitude of modulation onto the chaotic signals are discussed, and the bit-error rate for one such scheme is evaluated as a function of noise in the optical channel.
引用
收藏
页码:1301 / 1311
页数:11
相关论文
共 16 条
[1]   Synchronizing high-dimensional chaotic optical ring dynamics [J].
Abarbanel, HDI ;
Kennel, MB .
PHYSICAL REVIEW LETTERS, 1998, 80 (14) :3153-3156
[2]   Chaotic dynamics in erbium-doped fiber ring lasers [J].
Abarbanel, HDI ;
Kennel, MB ;
Buhl, M ;
Lewis, CT .
PHYSICAL REVIEW A, 1999, 60 (03) :2360-2374
[3]   Numerical evaluation of error probabilities of self-synchronizing chaotic communications [J].
Chen, CC ;
Yao, K .
IEEE COMMUNICATIONS LETTERS, 2000, 4 (02) :37-39
[4]   Stochastic-calculus-based numerical evaluation and performance analysis of chaotic communication systems [J].
Chen, CC ;
Yao, K .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2000, 47 (12) :1663-1672
[5]   Adams methods for the efficient solution of stochastic differential equations with additive noise [J].
Denk, G ;
Schaffler, S .
COMPUTING, 1997, 59 (02) :153-161
[6]  
Gagliardi R. M., 1976, OPTICAL COMMUNICATIO
[7]   Theory of quasiperiodicity in model of lasers with delayed optoelectronic feedback [J].
Grigorieva, EV ;
Haken, H ;
Kaschenko, SA .
OPTICS COMMUNICATIONS, 1999, 165 (4-6) :279-292
[8]  
PIEROUX D, 2001, PHYS REV E, V63
[9]   GENERALIZED SYNCHRONIZATION OF CHAOS IN DIRECTIONALLY COUPLED CHAOTIC SYSTEMS [J].
RULKOV, NF ;
SUSHCHIK, MM ;
TSIMRING, LS ;
ABARBANEL, HDI .
PHYSICAL REVIEW E, 1995, 51 (02) :980-994
[10]   PERIOD-DOUBLING ROUTE TO CHAOS IN A SEMICONDUCTOR-LASER SUBJECT TO OPTICAL-INJECTION [J].
SIMPSON, TB ;
LIU, JM ;
GAVRIELIDES, A ;
KOVANIS, V ;
ALSING, PM .
APPLIED PHYSICS LETTERS, 1994, 64 (26) :3539-3541