Functional connectivity between simple cells and complex cells in cat striate cortex

被引:188
作者
Alonso, JM [1 ]
Martinez, LM [1 ]
机构
[1] Rockefeller Univ, Neurobiol Lab, New York, NY 10021 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/1609
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In the cat primary visual cortex, neurons are classified into the two main categories of simple cells and complex cells based on their response properties. According to the hierarchical model, complex receptive fields derive from convergent inputs of simple cells with similar orientation preferences. This model received strong support from anatomical studies showing that many complex cells lie within the range of layer IV simple-cell axons but outside the range of most thalamic axons. Physiological evidence for the model, however, has remained elusive. Here we demonstrate that layer IV simple cells and layer II and III complex cells show correlated firing consistent with monosynaptic connections. As expected from the hierarchical model, all connections were in the direction from the simple cell to the complex cell, most frequently between cells with similar orientation preferences.
引用
收藏
页码:395 / 403
页数:9
相关论文
共 50 条
[1]   SPATIOTEMPORAL ENERGY MODELS FOR THE PERCEPTION OF MOTION [J].
ADELSON, EH ;
BERGEN, JR .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1985, 2 (02) :284-299
[2]   Precisely correlated firing in cells of the lateral geniculate nucleus [J].
Alonso, JM ;
Usrey, WM ;
Reid, RC .
NATURE, 1996, 383 (6603) :815-819
[3]   LAMINAR DISTRIBUTION OF 1ST-ORDER NEURONS AND AFFERENT TERMINALS IN CAT STRIATE CORTEX [J].
BULLIER, J ;
HENRY, GH .
JOURNAL OF NEUROPHYSIOLOGY, 1979, 42 (05) :1271-1281
[4]  
CHAPMAN B, 1991, J NEUROSCI, V11, P1347
[5]   RELATIONSHIPS BETWEEN MORPHOLOGY AND PHYSIOLOGY OF PYRAMID-PYRAMID SINGLE AXON CONNECTIONS IN RAT NEOCORTEX IN-VITRO [J].
DEUCHARS, J ;
WEST, DC ;
THOMSON, AM .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 478 (03) :423-435
[6]   A NEW METHOD FOR THE INSERTION OF MULTIPLE MICROPROBES INTO NEURAL AND MUSCULAR TISSUE, INCLUDING FIBER ELECTRODES, FINE WIRES, NEEDLES AND MICROSENSORS [J].
ECKHORN, R ;
THOMAS, U .
JOURNAL OF NEUROSCIENCE METHODS, 1993, 49 (03) :175-179
[7]   AN INTRACELLULAR ANALYSIS OF GENICULO-CORTICAL CONNECTIVITY IN AREA 17 OF THE CAT [J].
FERSTER, D ;
LINDSTROM, S .
JOURNAL OF PHYSIOLOGY-LONDON, 1983, 342 (SEP) :181-215
[8]   SYNAPTIC EXCITATION OF NEURONS IN AREA 17 OF THE CAT BY INTRACORTICAL AXON COLLATERALS OF CORTICO-GENICULATE CELLS [J].
FERSTER, D ;
LINDSTROM, S .
JOURNAL OF PHYSIOLOGY-LONDON, 1985, 367 (OCT) :233-252
[9]   Orientation selectivity of thalamic input to simple cells of cat visual cortex [J].
Ferster, D ;
Chung, S ;
Wheat, H .
NATURE, 1996, 380 (6571) :249-252
[10]   RELATION BETWEEN SHAPES OF POST-SYNAPTIC POTENTIALS AND CHANGES IN FIRING PROBABILITY OF CAT MOTONEURONES [J].
FETZ, EE ;
GUSTAFSSON, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1983, 341 (AUG) :387-410