Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil

被引:104
作者
Yue, B [1 ]
Xiong, LZ
Xue, WY
Xing, YZ
Luo, LJ
Xu, CG
机构
[1] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
[2] Shanghai Agrobiol Gene Ctr, Shanghai 201106, Peoples R China
关键词
Oryza sativa L; drought resistance; reproductive stage; quantiative trait loci (QTL);
D O I
10.1007/s00122-005-0040-1
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Drought resistance of rice is a complex trait and is mainly determined by mechanisms of drought avoidance and drought tolerance. The present study was conducted to characterize the genetic basis of drought resistance at reproductive stage in field by analyzing the QTLs for drought response index (DRI, normalized by potential yield and flowering time), relative yield, relative spikelet fertility, and four traits of plant water status and their relationships with root traits using a recombinant inbred population derived from a cross between an indica rice and upland rice. A total of 39 QTLs for these traits were detected with individual QTL explained 5.1-32.1% of phenotypic variation. Only two QTLs for plant water status were commonly detected in two environments, suggesting different mechanisms might exist in two types of soil conditions. DRI has no correlation with potential yield and flowering time under control, suggesting that it can be used as a good drought resistance index in field conditions. The co-location of QTLs for canopy temperature and delaying in flowering time suggested a usefulness of these two traits as indexes in drought resistance screening. Correlation and QTL congruence between root traits and putative drought tolerance traits revealed that drought avoidance (via thick and deep root traits) was the main genetic basis of drought resistance in sandy soil condition, while drought tolerance may play more role in the genetic basis of drought resistance in paddy soil condition. Therefore, both drought mechanisms and soil textures must be considered in the improvement of drought resistance at reproductive stage in rice.
引用
收藏
页码:1127 / 1136
页数:10
相关论文
共 36 条
[1]   Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice [J].
Ali, ML ;
Pathan, MS ;
Zhang, J ;
Bai, G ;
Sarkarung, S ;
Nguyen, HT .
THEORETICAL AND APPLIED GENETICS, 2000, 101 (5-6) :756-766
[2]   Genetic analysis of drought resistance in rice by molecular markers: Association between secondary traits and field performance [J].
Babu, RC ;
Nguyen, BD ;
Chamarerk, V ;
Shanmugasundaram, P ;
Chezhian, P ;
Jeyaprakash, P ;
Ganesh, SK ;
Palchamy, A ;
Sadasivam, S ;
Sarkarung, S ;
Wade, LJ ;
Nguyen, HT .
CROP SCIENCE, 2003, 43 (04) :1457-1469
[3]   ASSESSMENT OF DROUGHT RESISTANCE IN PEARL-MILLET [PENNISETUM-AMERICANUM (L) LEEKE] .2. ESTIMATION OF GENOTYPE RESPONSE TO STRESS [J].
BIDINGER, FR ;
MAHALAKSHMI, V ;
RAO, GDP .
AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 1987, 38 (01) :49-59
[4]  
BLUM A, 1993, INTERNATIONAL CROP SCIENCE I, P343
[5]   Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions .2. Phenology, biomass production and yield [J].
Boonjung, H ;
Fukai, S .
FIELD CROPS RESEARCH, 1996, 48 (01) :47-55
[6]   LOCATING GENES ASSOCIATED WITH ROOT MORPHOLOGY AND DROUGHT AVOIDANCE IN RICE VIA LINKAGE TO MOLECULAR MARKERS [J].
CHAMPOUX, MC ;
WANG, G ;
SARKARUNG, S ;
MACKILL, DJ ;
OTOOLE, JC ;
HUANG, N ;
MCCOUCH, SR .
THEORETICAL AND APPLIED GENETICS, 1995, 90 (7-8) :969-981
[7]   Rainfed lowland rice breeding strategies for Northeast Thailand. I. Genotypic variation and genotype x environment interactions for grain yield [J].
Cooper, M ;
Rajatasereekul, S ;
Immark, S ;
Fukai, S ;
Basnayake, J .
FIELD CROPS RESEARCH, 1999, 64 (1-2) :131-151
[8]   DROUGHT RESISTANCE IN SPRING WHEAT CULTIVARS .1. GRAIN-YIELD RESPONSES [J].
FISCHER, RA ;
MAURER, R .
AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 1978, 29 (05) :897-912
[9]   DEVELOPMENT OF DROUGHT-RESISTANT CULTIVARS USING PHYSIO-MORPHOLOGICAL TRAITS IN RICE [J].
FUKAI, S ;
COOPER, M .
FIELD CROPS RESEARCH, 1995, 40 (02) :67-86
[10]   Screening for drought resistance in rainfed lowland rice [J].
Fukai, S ;
Pantuwan, G ;
Jongdee, B ;
Cooper, M .
FIELD CROPS RESEARCH, 1999, 64 (1-2) :61-74