Attenuation of yeast UPR is essential for survival and is mediated by IRE1 kinase

被引:80
作者
Chawla, Aditi [1 ]
Chakrabarti, Sutapa [2 ]
Ghosh, Gourisankar [2 ]
Niwa, Maho [1 ]
机构
[1] Univ Calif San Diego, Div Biol Sci, Mol Biol Sect, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Div Chem & Biochem, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
UNFOLDED PROTEIN RESPONSE; ENDOPLASMIC-RETICULUM STRESS; MESSENGER-RNA; TRANSMEMBRANE PROTEIN; TRANSCRIPTION FACTOR; CRYSTAL-STRUCTURE; TYROSINE KINASE; ER; ACTIVATION; REVEALS;
D O I
10.1083/jcb.201008071
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The unfolded protein response (UPR) activates Ire1, an endoplasmic reticulum (ER) resident transmembrane kinase and ribonuclease (RNase), in response to ER stress. We used an in vivo assay, in which disappearance of the UPR-induced spliced HAC1 messenger ribonucleic acid (mRNA) correlates with the recovery of the ER protein-folding capacity, to investigate the attenuation of the UPR in yeast. We find that, once activated, spliced HAC1 mRNA is sustained in cells expressing Ire1 carrying phosphomimetic mutations within the kinase activation loop, suggesting that dephosphorylation of Ire1 is an important step in RNase deactivation. Additionally, spliced HAC1 mRNA is also sustained after UPR induction in cells expressing Ire1 with mutations in the conserved DFG kinase motif (D828A) or a conserved residue (F842) within the activation loop. The importance of proper Ire1 RNase attenuation is demonstrated by the inability of cells expressing Ire1-D828A to grow under ER stress. We propose that the activity of the Ire1 kinase domain plays a role in attenuating its RNase activity when ER function is recovered.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 44 条
[1]   ENERGETIC LIMITS OF PHOSPHOTRANSFER IN THE CATALYTIC SUBUNIT OF CAMP-DEPENDENT PROTEIN-KINASE AS MEASURED BY VISCOSITY EXPERIMENTS [J].
ADAMS, JA ;
TAYLOR, SS .
BIOCHEMISTRY, 1992, 31 (36) :8516-8522
[2]   Messenger RNA targeting to endoplasmic reticulum stress signalling sites [J].
Aragon, Tomas ;
van Anken, Eelco ;
Pincus, David ;
Serafimova, Iana M. ;
Korennykh, Alexei V. ;
Rubio, Claudia A. ;
Walter, Peter .
NATURE, 2009, 457 (7230) :736-U9
[3]   TRANSCRIPTIONAL INDUCTION OF GENES ENCODING ENDOPLASMIC-RETICULUM RESIDENT PROTEINS REQUIRES A TRANSMEMBRANE PROTEIN-KINASE [J].
COX, JS ;
SHAMU, CE ;
WALTER, P .
CELL, 1993, 73 (06) :1197-1206
[4]   A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response [J].
Cox, JS ;
Walter, P .
CELL, 1996, 87 (03) :391-404
[5]   On the mechanism of sensing unfolded protein in the endoplasmic reticulum [J].
Credle, JJ ;
Finer-Moore, JS ;
Papa, FR ;
Stroud, RM ;
Walter, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (52) :18773-18784
[6]   CRYSTAL-STRUCTURE OF CYCLIN-DEPENDENT KINASE-2 [J].
DEBONDT, HL ;
ROSENBLATT, J ;
JANCARIK, J ;
JONES, HD ;
MORGAN, DO ;
KIM, SH .
NATURE, 1993, 363 (6430) :595-602
[7]   Negative receptor signalling [J].
Dikic, I ;
Giordano, S .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (02) :128-135
[8]  
ELBLE R, 1992, BIOTECHNIQUES, V13, P18
[9]   Diabetes mellitus and exocrine pancreatic dysfunction in Perk-/- mice reveals a role for translational control in secretory cell survival [J].
Harding, HP ;
Zeng, HQ ;
Zhang, YH ;
Jungries, R ;
Chung, P ;
Plesken, H ;
Sabatini, DD ;
Ron, D .
MOLECULAR CELL, 2001, 7 (06) :1153-1163
[10]   Endoplasmic reticulum stress and the development of diabetes - A review [J].
Harding, HP ;
Ron, D .
DIABETES, 2002, 51 :S455-S461