Signal crosstalk and induced resistance: Straddling the line between cost and benefit

被引:418
作者
Bostock, RM [1 ]
机构
[1] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA
关键词
abscisic acid; ethylene; jasmonic acid; programmed cell death; salicylic acid;
D O I
10.1146/annurev.phyto.41.052002.095505
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
This review discusses recent progress in our understanding of signaling in induced plant resistance and susceptibility to pathogens and insect herbivores, with a focus on the connections and crosstalk among phytohormone signaling networks that regulate responses to these and other stresses. Multiple stresses, often simultaneous, reduce growth and yield in plants. However, prior challenge by a pathogen or insect herbivore also can induce resistance to subsequent challenge. This resistance, or failure of susceptibility, must be orchestrated within a larger physiological context that is strongly influenced by other biotic agents and by abiotic stresses such as inadequate light, temperature extremes, drought, nutrient limitation, and soil salinity. Continued research in this area is predicated on the notion that effective utilization of induced resistance in crop protection will require a functional understanding of the physiological consequences of the "induced" state of the plant, coupled with the knowledge of the specificity and compatibility of the signaling systems leading to this state. This information may guide related strategies to improve crop performance in suboptimal environments, and define the limits of induced resistance in certain agricultural contexts.
引用
收藏
页码:545 / 580
页数:40
相关论文
共 237 条
[1]   The salicylic acid-dependent defence pathway is effective against different pathogens in tomato and tobacco [J].
Achuo, EA ;
Audenaert, K ;
Meziane, H ;
Höfte, M .
PLANT PATHOLOGY, 2004, 53 (01) :65-72
[2]   ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development [J].
Alba, R ;
Fei, ZJ ;
Payton, P ;
Liu, Y ;
Moore, SL ;
Debbie, P ;
Cohn, J ;
D'Ascenzo, M ;
Gordon, JS ;
Rose, JKC ;
Martin, G ;
Tanksley, SD ;
Bouzayen, M ;
Jahn, MM ;
Giovannoni, J .
PLANT JOURNAL, 2004, 39 (05) :697-714
[3]   Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J].
Alvarez, ME ;
Pennell, RI ;
Meijer, PJ ;
Ishikawa, A ;
Dixon, RA ;
Lamb, C .
CELL, 1998, 92 (06) :773-784
[4]   Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato [J].
Anith, KN ;
Momol, MT ;
Kloepper, JW ;
Marois, JJ ;
Olson, SM ;
Jones, JB .
PLANT DISEASE, 2004, 88 (06) :669-673
[5]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[6]   Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways [J].
Asai, T ;
Stone, JM ;
Heard, JE ;
Kovtun, Y ;
Yorgey, P ;
Sheen, J ;
Ausubel, FM .
PLANT CELL, 2000, 12 (10) :1823-1835
[7]  
Audenaert K, 2002, PLANT PHYSIOL, V128, P491, DOI 10.1104/pp.010605
[8]   Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2:: Role of salicylic acid, pyochelin, and pyocyanin [J].
Audenaert, K ;
Pattery, T ;
Cornelis, P ;
Höfte, M .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2002, 15 (11) :1147-1156
[9]   Jasmonate-induced responses are costly but benefit plants under attack in native populations [J].
Baldwin, IT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (14) :8113-8118
[10]   EFFECTS OF SALICYLIC-ACID ON PLANT WATER RELATIONSHIPS [J].
BARKOSKY, RR ;
EINHELLIG, FA .
JOURNAL OF CHEMICAL ECOLOGY, 1993, 19 (02) :237-247