Berry phase correction to electron density of states in solids

被引:460
作者
Xiao, D [1 ]
Shi, JR [1 ]
Niu, Q [1 ]
机构
[1] Univ Texas, Dept Phys, Austin, TX 78712 USA
关键词
D O I
10.1103/PhysRevLett.95.137204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Liouville's theorem on the conservation of phase-space volume is violated by Berry phase in the semiclassical dynamics of Bloch electrons. This leads to a modification of the phase-space density of states, whose significance is discussed in a number of examples: field modification of the Fermi-sea volume, connection to the anomalous Hall effect, and a general formula for orbital magnetization. The effective quantum mechanics of Bloch electrons is also sketched, where the modified density of states plays an essential role.
引用
收藏
页数:4
相关论文
共 20 条
[1]  
[Anonymous], 1999, AM J PHYS, DOI DOI 10.1119/1.19118
[2]  
Ashcroft N.W., 1976, Solid State Physics
[4]  
Bohm A., 2003, TEXT MONOGR
[5]   Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassical dynamics in magnetic Bloch bands [J].
Chang, MC ;
Niu, Q .
PHYSICAL REVIEW B, 1996, 53 (11) :7010-7023
[6]   The anomalous Hall effect and magnetic monopoles in momentum space [J].
Fang, Z ;
Nagaosa, N ;
Takahashi, KS ;
Asamitsu, A ;
Mathieu, R ;
Ogasawara, T ;
Yamada, H ;
Kawasaki, M ;
Tokura, Y ;
Terakura, K .
SCIENCE, 2003, 302 (5642) :92-95
[7]   Berry curvature on the Fermi surface: Anomalous Hall effect as a topological Fermi-liquid property [J].
Haldane, FDM .
PHYSICAL REVIEW LETTERS, 2004, 93 (20) :206602-1
[8]   Anomalous Hall effect in ferromagnetic semiconductors [J].
Jungwirth, T ;
Niu, Q ;
MacDonald, AH .
PHYSICAL REVIEW LETTERS, 2002, 88 (20) :4-207208
[9]   THEORY OF POLARIZATION OF CRYSTALLINE SOLIDS [J].
KINGSMITH, RD ;
VANDERBILT, D .
PHYSICAL REVIEW B, 1993, 47 (03) :1651-1654
[10]   DEFORMATION OF SYMPLECTIC STRUCTURE AND ANOMALOUS COMMUTATORS IN FIELD-THEORIES [J].
KURATSUJI, H ;
IIDA, S .
PHYSICAL REVIEW D, 1988, 37 (02) :441-447